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Fig. 3 - NASA F/A-18 Research Test Aircraft Tail Number 853 
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13 sec) with and without Optimal Control Modification Adaptive Law 150 
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Fig. 7 - Time History of Longitudinal States due to a B-Matrix Failure (Stabilator 
Jammed at 2;5" at 1.3 sec) with and without Optimal Control Modification 
Adaptive Law 150 
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Fig. 1U- Time History of Pitch Rate Error and Weights due to an ArK8atriX Failure 
(Cno ShUta1Z sec) with Optimal Control Modification Adaptive Law 250(l`=[L5 
and T-=5O with Fixed v=l\ 
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Fie. 12 - Advanced Concept Flight Simulator at NASA Ames Research Center 
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Fig. 13 - Pilot Cooper-Harper Ratings of Adaptive Flight Controllers in Advanced 
Concept Flight Simulator 
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Fig. 32 -NASA Full-scale Advanced Systems Testbed (FAST) F/A-18 Aircraft 
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Fi& 34 - Handling Qualities Ratings for 2-g Tracking Task with Reduced Pitch 
Damping Failure 
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Damping Failure 
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CONTROL SYSTEMS WITH NORMALIZED 
AND COVARIANCE ADAPTATION BY 

OPTIMAL CONTROL MODIFICATION 

CROSS-REFERENCE TO RELATED 	5  
APPLICATIONS 

The present invention is based upon and claims priority 
from prior U.S. Provisional Patent Application No. 61/679, 
945, filed onAug. 6, 2012 and U.S. Provisional PatentAppli- 10  
cation No. 61/798,236, filed on Mar. 15, 2013, the entire 
disclosure of which are herein incorporated by reference in 
their entirety. 

ORIGIN OF INVENTION 	 15 

The invention described herein was made by employees of 
the United States Government and may be manufactured and 
used by or for the Government of the United States of 
America for governmental purposes without the payment of 20 

any royalties thereon or therefore. 

BACKGROUND 

The present invention relates to control systems for 25 

dynamic systems and more specifically to adaptive control 
systems for an aircraft or, more generally, a flight vehicle. 

Feedback control systems are used to control and improve 
stability of many physical systems such as flight vehicles. 
Conventional feedback controls are typically designed using 30 

a set of constant-value control gains. As a physical system 
operates over a wide range of operating conditions, the values 
of the control gains are scheduled as a function of system 
parameters. This standard approach is known as gain-sched-
uled feedback control. A conventional feedback control SyS- 35 

tem generally requires a full knowledge of a physical system 
for which the control system is designed. Under off-nominal 
operating conditions when a system experiences failures, 
damage, degradation, or otherwise adverse events, a conven-
tional feedback control system may no longer be effective in 40 

maintaining performance and stability of the system. 
Adaptive control has been developed to provide a mecha-

nism for changing control gains on line by adaptation to the 
system uncertainty. Thus, one advantage of adaptive control 
is its ability to control a physical system that undergoes Sig- 45 

nificant, but unknown changes in the system behaviors. The 
ability to adjust control gains online makes adaptive control 
an attractive technology that has been receiving a lot of inter-
ests in the industry. Yet, despite the potential benefits, adap-
tive control has not been accepted as a mature technology 50 

which can be readily certified for deployment in mission-
critical, safety-critical or human-rated systems such as air-
craft flight control systems. A number of challenges presently 
exist such as the following: 

One of problem that has not been well addressed is the 55 

adverse effect of persistent excitation. In a nutshell, persistent 
excitation is a condition that relates to the richness of input 
signals to a control system. During adaptation, some degree 
of persistent excitation must exist in an input signal to enable 
a human operator or an adaptive control system to learn and 60 

adapt to the changing environment. However, an excessive 
degree of persistent excitation can adversely affect stability of 
the system. The possibility of excessive persistent excitation 
can exist in off-nominal systems with human operators in the 
loop who sometimes can unknowingly create persistently 65 

exciting large input signal in order to rapidly adapt to the 
changing environment.  

2 
Another important problem that exists in adaptive control 

is the complex nature of the input-output signals, which are 
inherently nonlinear. The complex, nonlinear input-output 
mapping of many adaptive control methods can lead to an 
unpredictable behavior of a control system. To this extent, an 
operator cannot learn from a past response to predict what a 
future response will be. In contrast, a linear input-output 
mapping is highly desirable since the knowledge from a past 
response can be used to predict a future response. Conse-
quently, adaptive control systems tend to be unpredictable 
and inconsistent in their behaviors. The predictability of a 
control system is a crucial element in the operation of a 
control system that involves a human operator such as an 
aircraft pilot or an automobile driver. Unpredictability can 
result in over-actuated or under-actuated control signals 
which both can lead to undesirable outcomes and potentially 
catastrophic consequences. 

The sensitivity of adaptive control systems to large inputs 
and persistent learning is another important consideration. 
Because of the nonlinear behaviors, large inputs can lead to 
deleterious effects on adaptive control systems. A physical 
system may be stable when small amplitude inputs are used in 
adaptive control, but the same system can become unstable 
when the input amplitude increases. The amplitude of an 
input can be difficult to control because it can be generated by 
a human operator like a pilot. Persistent learning is referred to 
the process of constant adaptation to small error signals. In 
some situations, when an adaptive control system has 
achieved sufficient performance, the adaptation process 
needs to be scaled down. Maintaining a constant state of fast 
adaptation even after the errors have diminished can result in 
persistent learning. At best, persistent learning would do 
nothing to further improve the performance. At worst, persis-
tent learning reduces robustness of an adaptive control system 
by constantly adapting to small error signals. 

The most fundamental issue is the lack of metrics to assess 
stability of an adaptive control system. Currently, there are no 
well-established metrics or methods for analyzing thereof 
that can satisfy conventional certification requirements for 
adaptive control. Unlike conventional classical linear control 
which is endowed with many important and useful tools for 
analyzing performance and stability certification require-
ments of a closed-loop system, adaptive control suffers a 
disadvantage of the lack thereof. Consequently, there is cur-
rently no fielded adaptive control system certified for use in 
any production system. 

A distinct feature of a typical adaptive control design is the 
ad-hoc, trial-and-error nature of the design process which 
involves selecting suitable design parameters such as the 
adaptive gain, or adaptation rate, without analytical methods 
for guiding the design. A trial-and-error design process may 
enable an adaptive control system to work well under a design 
conditions, but by the same token may fail to work well under 
other conditions. As a result, this ad-hoc process tends to 
make the design of adaptive control to be particularly difficult 
to implement by general practitioners of control systems. 

There exist several robust modification adaptive control 
methods. The two most popular conventional methods are the 
a-modification and the e-modification. Both or these meth-
ods were established in the 1980's. The a-modification adap-
tive control provides a constant damping mechanism to limit 
the adaptation process from becoming unstable, and the 
e-modification provides a damping mechanism that is pro-
portional to the norm of the tracking error signal to accom-
plish the same. The projection method is another popular 
method that is used to bound adaptive parameters to prevent 
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issues with persistent learning. As with most adaptive control 
methods, the aforementioned challenges exist in one form or 
another. 

BRIEF SUMMARY 

A novel method for improving performance and stability of 
control systems has been developed. This method represents 
a significant advancement in the state-of-the art in adaptive 
control technology. The present invention discloses a new 
type of adaptive control law, called optimal control modifi-
cation, which blends two control technologies together: opti-
mal control and adaptive control. Unlike the prior art, the 
present invention provides: 1) the introduction of a damping 
mechanism that is proportional to a property known as per-
sistent excitation to improve robustness of adaptation in the 
presence of persistently exciting signals, 2) the existence of 
linear asymptotic properties that make the method well suited 
for design and analysis for performance and stability guaran-
tee, and 3) the use of a time-varying adaptive gain by two 
methods: normalization and covariance adjustment to further 
improve stability of the control systems in the presence of 
time delay and unmodeled dynamics. 

The method has gone through a series of validation process 
ranging from many desktop aircraft flight control simulations 
to a pilot evaluation in high-fidelity motion-based Advanced 
Concept Flight Simulator at NASA Ames that culminated in 
a recent flight test program on a NASA F/A-18A research test 
aircraft. The successful pilot-in-the-loop flight test of the 
optimal control method on the NASA F/A-18A aircraft rep-
resents the further point in technology validation at NASA. 
No other adaptive control method in the field is presently 
known to have gone through a validation process this far that 
involves flight testing on a human-rated high-performance 
aircraft. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

The accompanying figures where like reference numerals 
refer to identical or functionally similar elements throughout 
the separate views, and which together with the detailed 
description below are incorporated in and form part of the 
specification, serve to further illustrate various embodiments 
and to explain various principles and advantages all in accor-
dance with the present invention, in which: 

FIG. 1 illustrates a block diagram of an adaptive control 
system with the optimal control modification adaptive law as 
taught by the present invention; 

FIG. 2 illustrates a block diagram of a dynamic inversion 
adaptive flight control architecture; 

FIG. 3 is a photograph of the NASA F/A-18 research test 
aircraft, tail number 853; which is the subject aircraft for the 
application of the present invention; 

FIG. 4 is the plot of the time history of the longitudinal 
states due to an A-matrix failure (C ma  shift at 13 sec) in the 
NASA F/A-18 model with and without the optimal control 
modification adaptive law; 

FIG. 5 is the plot of the time history of the tracking errors 
due to an A-matrix failure (C ma  shift at 13 sec) in the NASA 
F/A-18 model with and without the optimal control modifi-
cation adaptive law; 

FIG. 6 is the plot of the time history of the control surfaces 
due to an A-matrix failure (C ma  shift at 13 sec) in the NASA 
F/A-18 model with and without the optimal control modifi-
cation adaptive law; 

4 
FIG. 7 is the plot of the time history of the longitudinal 

states due to a B-matrix failure (stabilator jammed at 2.5° at 
113 sec) in the NASA F/A-18 model with and without the 
optimal control modification adaptive law; 

5 	FIG. 8 is the plot of the time history of the lateral-direc- 
tional states due to a B-matrix failure (stabilator jammed at 
2.5° at 13 sec) in the NASA F/A-18 model with and without 
the optimal control modification adaptive law; 

FIG. 9 is the plot of the time history of the tracking errors 
10 due to a B-matrix failure (stabilator jammed at 2.5° at 13 sec) 

in the NASA F/A-18 model with and without the optimal 
control modification adaptive law; 

FIG. 10 is the plot of the time history of the pitch rate error 
15  and weights due to an A-matrix failure (C ma  shift at 2 sec) in 

the NASA F/A-18 model with the optimal control modifica-
tion adaptive law (F-0.5 and E=50 with fixed v=1); 

FIG. 11 is the plot of the time history of the pitch rate error 
and weights due to an A-matrix failure (C ma  shift at 2 sec) in 

20 the NASA F/A-18 model with the optimal control modifica-
tion adaptive law (Fixed F -5 with v-0.25 and v=1); 

FIG. 12 is a photograph of the Advanced Concept Flight 
Simulator at NASA Ames Research Center in which a pilot 
study was conducted to evaluate the optimal control modifi- 

25 cation adaptive law among six other adaptive controllers; 
FIG. 13 is the pilot Cooper-Harper Ratings of the seven 

adaptive flight controllers evaluated by 8 NASA test pilots in 
the Advanced Concept Flight Simulator; 

FIG. 14 is the plot of the response of a first-order SISO 
30 plant with the optimal control modification adaptive law with 

a time delay td-0.0020 sec showing the agreement between 
the analytical values and the numerical values of the steady 
state error and the equilibrium value of the adaptive param-
eter; 

35 	FIG. 15 is the plot of the response of a first-order SISO 
plant with the optimal control modification adaptive law with 
a time delay td-0.2795 sec showing the agreement between 
the analytical value and the numerical value of the time-delay 
margin; 

40 	FIG. 16 is the plot of the response of the same first-order 
SISO plant with the optimal control modification adaptive 
law showing the existence of a scaled input-output property 
of the optimal control modification adaptive law and the lack 
thereof of the prior art a-modification and e-modification; 

45 FIG. 17 is the plot of the response of the first-order SISO 
plant with unmodeled dynamics in the Rohrs counterexample 
illustrating the instability phenomenon of standard model-
reference adaptive control; 

FIG. 18 is the plot of the phase margin and the cross-over 
50 frequency of the Rohrs counterexample as analytically com-

puted from the linear asymptotic property of the optimal 
control modification adaptive law as taught by the present 
invention; 

FIG. 19 is the plot of the response of the first-order SISO 
55 plant with unmodeled dynamics in the Rohrs counterexample 

of Rohrs Counterexample showing stability and the agree-
ment between the analytically predicted output and the 
numerically computed output with the optimal control modi-
fication adaptive law; 

60 	FIG. 20 is the plot of the response of a non-minimum phase 
first-order SISO plant illustrating an analytical method for 
computing the modification parameter v to ensure stable 
adaptation for a non-minimum phase plant; 

FIG. 21 illustrates an adaptive control system with the 
65 optimal control modification adaptive law that further 

includes the covariance adaptive gain adjustment method as 
taught by the present invention; 
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6 
FIG. 22 illustrates an adaptive control system with the 	an adaptive control system to learn, the present invention will 

optimal control modification adaptive law that further 	provide an effective damping mechanism to counteract any 
includes the adaptive gain normalization method as taught by 	adverse effects of persistent excitation that can lead to insta- 
the present invention; 
	 bility. 

FIG. 23 illustrates a partial left wing tip damage, which is 5 	An important key enabling feature of the present invention 
the subject aircraft for the application of the present inven- 

	is the linear asymptotic property. For a linear plant with 
tion; 	 uncertainty, the optimal control modification approaches 

FIG. 24 is the plot of the roll rate responses due to the left 
	asymptotically to a linear control system under fast adapta- 

wing damage for four different flight controllers; 
	 tion. The condition of fast adaptation means that the rate at 

FIG. 25 is the plot of the pitch rate responses due to the left io which the adaptive parameters rule estimated by the optimal 
wing damage for four different flight controllers; 	 control modification is sufficiently large relative to the rate of 

FIG. 26 is the plot of the yaw rate responses due to the left 
	

the system response. With fast adaptation, the behavior of the 
wing damage for four different flight controllers; 	 optimal control modification is asymptotically linear. This 

FIG. 27 is the plot of the pitch angle responses due to the 
	feature is the most unique attribute as compared to any other 

left wing damage for four different flight controllers; 
	

15 existing conventional adaptive control methods, with the 
FIG. 28 is the plot of the bank angle responses due to the 	exception of the LI adaptive control. This feature affords a 

left wing damage for four different flight controllers; 	number of advantages. First and foremost, the optimal control 
FIG. 29 is the plot of the aileron deflection responses due to 	modification substantially reduces the complex nonlinear 

the left wing damage for four different flight controllers; 
	input-output mapping of conventional adaptive control meth- 

FIG. 30 is the plot of the elevator deflection responses due 20 ods. The asymptotic linear property therefore makes the 
to the left wing damage for four different flight controllers; 	present invention much more predictable and consistent in its 

FIG. 31 is the plot of the rudder deflection responses due to 	performance. 
the left wing damage for four different flight controllers; 

	Another key feature of the optimal control modification is 
FIG. 32 is a photograph of the NASA Full-scale Advanced 

	
the use of normalization or covariance adjustment of time- 

Systems Testbed (FAST) F/A-18 research test aircraft, tail 25 varying adaptive gain to reduce adverse effects of large ampli- 
number 853; 
	 tude inputs and persistent learning. The normalization effec- 

FIG. 33 is the block diagram of the nonlinear dynamic 
	tively modifies the adaptive gain by dividing the adaptive gain 

inversion adaptive flight control system implemented on 
	by the squares of the input amplitudes, so that the optimal 

NASA FAST aircraft employing the optimal control modifi- 	control modification is much less sensitive to large amplitude 
cation adaptive law with the adaptive gain normalization; 

	
30 inputs. As a result, the optimal control modification can 

FIG. 34 is the plot of the handling qualities ratings for a 2-g 	achieve a significant increase in stability margins. Another 
tracking task with a reduced pitch damping failure; and 

	method for improving stability margins by eliminating or 
FIG. 35 is the plot of the handling qualities rating for a 	reducing persistent learning is the covariance adjustment 

formation tracking task with a reduced roll damping failure. 	method. During adaptation, the covariance adjustment 
35 method continuously adjusts the adaptation rate or adaptive 

DETAILED DESCRIPTION 
	

gain from an initial large value toward a final lower value. 
Thus, once the adaptation has achieved its objective of restor- 

The present invention addresses the current problems in 
	

ing performance, a large adaptive gain is no longer needed 
adaptive control technology with a novel adaptive control 

	
and therefore should be reduced. As a result, a significant 

method, called optimal control modification which blends 40 increase in robustness is attained. 
two control technologies together: optimal control and adap- 	In regards to the lack of metrics for stability and methods 
tive control. The key features that differentiate this invention 

	
for analyzing thereof, the linear asymptotic property of the 

from the prior art are: 1) the introduction of a damping mecha- 	optimal control modification affords an important advantage. 
nism that is proportional to property known as persistent 

	
Stability of conventional model-reference adaptive control 

excitation to improve robustness of adaptation in the presence 45 generally decreases with increasing the adaptive gain. In the 
of persistently exciting signals, 2) the linear asymptotic linear 

	
limit, a stability margin of the standard model-reference 

property that makes the method more amenable to perfor- 	adaptive control tends to zero as the adaptive gain becomes 
mance and stability analysis in a linear context, and 3) the use 

	
infinitely large. With fast adaptation, the adaptive gain is 

of a time-varying adaptive gain by two methods: normaliza- 	assumed to be infinitely large or much larger than the rate of 
tion and covariance adjustment to further improve stability of 50 the system response. Then, the optimal control modification 
the control systems in the presence of time delay and unmod- 	tends to a linear control system. The feedback control system 
eled dynamics. 	 in the limit behaves as a linear control system, unlike most 

The present invention addresses specifically to current 	conventional adaptive control methods. Because the feedback 
challenges with adaptive control in these areas: 1) persistent 	control system is asymptotically linear, there exist many well- 
excitation, 2) complex nonlinear input-output mapping, 3) 55 accepted metrics for analyzing stability of such systems. 
large inputs and persistent learning, and 4) the lack of stability 

	
These stability metrics are used in many well-established 

analysis tools for certification. The invention has been subject 	control system specifications such as MIL-SPEC. Moreover, 
to many simulations and flight testing. The results substanti- 	there are many widely available methods for analyzing sta- 
ate the effectiveness of the invention and demonstrate the 

	
bility of linear control systems. Thus, the present invention 

technical feasibility for use in modem aircraft flight control 60 can potentially address the lack of a certification process for 
systems. 	 adaptive control by leveraging the linear asymptotic property 

The present invention successfully addresses the existing 	to enable adaptive control based on the present invention to be 
problems with the following unique features: 	 analyzed using well-established metrics for stability and 

The optimal control modification provides robustness to 	methods for analyzing thereof. 
persistently exciting input signals by adding a damping 65 	This innovation is expected to have a wide range of com- 
mechanism proportional to the persistent excitation quantity. 	mercial potential applications in aerospace industry, transport 
Thus, as apersistently exciting input signal is applied to allow 	vehicle industry, etc. In particular, flight control is one area of 
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major interest and high potential applications. Aviation indus-
try which may be interested in this technology includes Boe-
ing, Honeywell, and others. NASA aviation safety research as 
well as space launch vehicle system development could be 
potential users of this technology. 

Optimal Control Modification Adaptive Control 
Learning is an optimization process that attempts to recon-

struct a model of a system which operates in an uncertain 
environment. The optimization process is designed to mini-
mize the error between the model of the system and the actual 
observed behaviors of the system. The optimality of the pro-
cess results in a mathematical law that describes the adapta-
tion or learning process. Therefore, the notion of optimization 
is a fundamental principle of system identification or param-
eter estimation techniques which can be viewed as an adap-
tation process. 

The notion of optimization is generally not considered in 
the standard model-reference adaptive control. The param-
eter estimation process based on the standard model-refer-
ence adaptive control approach is usually driven by the error 
between the reference model outputs and the actual system 
outputs, known as tracking error. The learning or adaptive law 
is effectively a nonlinear parameter estimation process. 
Asymptotic tracking, which is referred to the tracking error 
tending to zero in the limit, is an ideal behavior of the standard 
model-reference adaptive control which can be achieved if 
the structure of the uncertainty is known. However, with 
uncertainty with unknown structures or unmodeled dynam-
ics, the standard model-reference adaptive control can 
become unstable. 

Parameter drift is a numerical phenomenon in adaptive 
control that results in a blow-up of adaptive parameters. This 
blow-up is caused by the ideal behavior of asymptotic track-
ing of the standard model-reference adaptive control which 
results in infinite adaptive parameters in an attempt of seeking 
a zero tracking error in the limit. This can be mathematically 
illustrated by a simple control system expression: 

z=ax+bu+w 	 (1) 

u=-k (t)x 	 (2) 

where kx(t) is an adaptive feedback gain which can be 
computed by the standard model-reference adaptive control. 

For a sufficient large disturbance, the standard model-ref-
erence adaptive control attempts to generate a high-gain con-
trol in order to reduce the effect of the disturbance. In the 
limit, the steady-state solution of x is obtained as 

w 	 (3) 
— = 
r~~ 	 a - kx (t) 

In order to seek a zero solution in the limit, k x(t) must tend 
to a very large value in the limit. Thus, the standard model-
reference adaptive control can cause k x(t) to become 
unbounded. In practice, a high-gain control with a large value 
of kx(t) can be problematic since real systems can include 
other closed-loop behaviors that can lead to instability when 
k(t) becomes large. Thus, parameter drift can lead to instabil-
ity in practical applications. 

As the complexity of a control systems increases, robust-
ness of adaptive control becomes increasingly difficult to 
ascertain. By definition, robustness is the ability for a control 
system to remain stable in the presence of unstructured uncer-
tainty and or unmodeled dynamics. In practical applications, 
the knowledge of a real system can never be established 
exactly. Thus, a mathematical model of a physical system 

8 
often cannot fully capture all the real, but unknown effects 
due to unstructured uncertainty and or unmodeled dynamics. 
All these effects can produce unstable closed-loop dynamics 
using the standard model-reference adaptive control. 

5 The present invention takes advantage of the notion of 
optimization or optimal control to improve robustness of 
adaptive control by means of the development novel adaptive 
control method called optimal control modification. The opti-
mization framework is posed as a minimization of the L 2  

io norm of the tracking error bounded away from the origin by a 
finite distance. This distance is a measure of robustness. Thus, 
the optimization is designed explicitly to trade away the ideal 
property of asymptotic tracking of the standard model-refer-
ence adaptive control for improved robustness by minimizing 

15 the following cost function: 

r 

J = fim 1 f  (e - 0)T  Q(e - 0)dt 	
( ) 

r~~ 2 0  

20 

where e(t) is the tracking error and A(t) is an unknown 
lower bound of the tracking error, which represents a distance 
from the origin. 

25 	By avoiding asymptotic tracking, the present invention can 
achieve improved robustness while maintaining sufficient 
performance with bounded tracking error. In fact, almost all 
conventional robust adaptive control methods achieve 
bounded tracking as opposed to asymptotic tracking in 

30  exchange for improved robustness. Unlike many conven-
tional robust adaptive control methods, the present invention 
accounts for bounded tracking explicitly in an optimization 
framework. 

To further elucidate the novelty of the present invention, 
35 refer to FIG. 1 which illustrates an adaptive control system 

100 of the present invention. The adaptive control system 100 
further comprises a nonlinear plant 105, an adaptive control-
ler 110, a reference model 115, and an optimal control modi-
fication adaptive law 120 as taught by the present invention. 

40 
The nonlinear plant 105 with a matched uncertainty and an 

unmatched disturbance is described mathematically as 

z=Ax+B[u+O *T(D(x)]+w 	 (5) 

where x(t) is a state vector, u(t) is a control vector, A and B 
45 are known matrices such that the pair (A,B) is controllable, 

O* is an unknown constant ideal weight matrix that repre-
sents aparametric uncertainty, (D(x) is a vector of knownbasis 
functions that are continuous and at least in C i , and w(t) is a 
bounded disturbance with an upper bound w, 

50 	The feedback adaptive controller 110 represented by u(t), 
is designed to achieve a command-following objective as 

u=-K,x+K,r-u, 	 (6) 

where r(t) is a bounded command vector, K x  is a stable 
55 feedback gain matrix such that A—BK x  is Hurwitz, K,, is a 

command feedforward gain matrix, and uad(t) is an adaptive 
control signal of the present invention which estimates the 
parametric uncertainty in the plant as 

60 	
uQ -O T(D(x) 
	

(7) 

where O(t) is an estimate of the parametric uncertainty E)*.   
The adaptive controller 110 is designed to follow the ref-

erence model 115 which is defined as 

65 
zm =Amxm +Bmr 	 (8) 

where A_=A—BKx  and Bm=BK,.. 
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Let 0=0-0* be an estimation error of the parametric 	The bound on A(t) as tf-- can be estimated by 
uncertainty and e--xm -x be the tracking error, then the track- 
ing error equation becomes 

T 	 17 

e=Ame+B6 7(D (x) -w 	 (9) 5 	11A11 <  
Ai, (Q) 	

d("'(x))  +IIP11(IIB11110*1111 (D (x)11 +wo)1 	( ) 

The optimization can be formulated as a dynamically con-
strained optimization problem using the Pontryagin's Maxi-
mum Principle. Towards that end, defining a Hamiltonian 

H(e,6)=112(e—A) 7Q(e—A)+p 7(t)[A m e+B67(D(x)—w] 	 (10) 

where p(t) is an adjoint variable. 
Then the adjoint equation can be obtained from the neces-

sary condition as 

P=-VH T-- Q* (e— A) — Am TP 	 (11) 

with the transversality condition p(t,--)O since e(0) is 
known. 

The optimal control modification adaptive law 120 can 
then be formulated by a gradient method as 

6=ry HOT =-r(D(x)p 7B 	 (12) 

where F-F'>0 is a constant positive -definite adaptive gain 
matrix. 

A sweep method can be used to obtain an approximate 
solution of the adjoint variable. Upon analysis, it can be 
shown that the adjoint variable p(t) is obtained as 

p=Pe—vAm 7PB0 7(D(x) 	 (13) 

where v>0 is the modification parameter which is a design 
free parameter such that v=1 corresponds to the approximate 
optimal solution and v;-I corresponds to a sub-optimal solu-
tion, and P=P T>0 is a positive-definite matrix which solves 
the following Lyapunov equation: 

PAm +Am 7P+Q=0 	 (14) 

where Q-QT>0 is a positive-definite weighting matrix. 
This leads to the following optimal control modification 

adaptive law 120 which is the basis of the present invention: 

0=I'(D(x)[e7P—v(D 7(x)OB TPAm ']B 	 (15) 

The inputs of the optimal control modification adaptive law 
120 are the tracking error e(t) and the basis function (D (x). The 
design parameters of the optimal control modification adap-
tive law 120 are the adaptive gain matrix L, the weighting 
matrix Q which influences the Lyapunov matrix P, and the 
modification parameter v. 

In the expression of the optimal control modification adap-
tive law 120, the first term inside the bracket is the standard 
adaptive law. The second term is the result of the optimiza-
tion . This term is referred to as the optimal control modifica-
tion term. Contained therein is a product term (D(x)( T(x) 
whichrepresents the effect of a persistent excitation condition 

Illf o 10+7(D(x)(D 7(x)dtaal 	 (16) 

Thus, the optimal control modification term effectively 
provides a damping mechanism that is proportional to the 
persistent excitation to reduce the adverse effect thereof on 
adaptive control. 

The role of the modification parameter v is important. If 
performance is more desired in a control design than robust-
ness, then v could be selected to be a small value. In the limit 
when v-0, the standard model-reference adaptive control is 
recovered and asymptotic tracking is achieved but at the 
expense of robustness . On the other hand , if robustness is a 
priority in a design, then a larger value of v can be chosen. 

which is dependent upon the modification parameter v, the 
norm of the parametric uncertainty I JO *1 1,  and the upper bound 

10 of the disturbance w, 

The optimal control formulation of the optimal control 
modification codification adaptive law 120 thus shows that 
~JA(t)JJ will always remain finite as long as the uncertainty and 

15  or the disturbance exists. Therefore , bounded tracking as 
opposed to asymptotic tracking is better achieved with the 
optimal control modification adaptive law 120 to improve 
robustness. In contrast , the standard model-reference adap-
tive control can achieve the ideal property of asymptotic 

20 tracking if the disturbance w(t)O, but usually at the expense 
of robustness to unmodeled dynamics, time delay, and exog-
enous disturbances. In the presence of the disturbance w(t), 
the standard model-reference adaptive control can result in a 
parameter drift when the adaptive parameter O(t) can grow 

25  unbounded. Thus, in many real systems, asymptotic tracking 
is a very demanding requirement , if not almost impossible, 
that usually cannot be met without any restrictions. The opti-
mal control formulation of the optimal control modification 
adaptive law 120 therefore demonstrates that bounded track- 

30 ing is a more realistic control objective if robustness is to be 
satisfied concurrently. Since IJAII is proportional to the modi-
fication parameter v, the optimal control modification adap-
tive law 120 canbe designed judiciously to trade performance 
with robustness. Increasing the value of the modification 

35 parametery will reduce tracking performance but by the same 
token increase robustness. This trade -off generally exists in 
most feedback control systems but the standard model-refer-
ence adaptive control. 

40 	Using the standard Lyapunov stability theory, it can be 
shown that the optimal control modification adaptive law 120 
is stable and results in an uniformly ultimately bounded track-
ing with the following ultimate bound: 

45 

;L._ (p)62 +;mctt(r 1)K2 	 (1  g) 
Ilell ~ P =  

50 where 

	

vcc2 	
(19) 

2 	4 
6=C2+ C2+ 

C 

	

 

C, C2 	 (20) 
K = C4+VC4

VC  

60  for any modification parameter 0<v<vm_,  where 

Ct =';L i,(Q), C2 = 
A,»~(~wo 

65 

c,=k_JBTA_-TQ` _-'B)q)02' 



0 
Am 

- f 
l 

-

/ 

55 L - K Kv J 

B- ~ 0  

(38)  

(39)  
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short-period mode and the Dutch roll mode. The reference 

JIB TPAm1BIIDo 	 model 135 is a second-order model that specifies desired 
C4 = t ;,,(BTA-TQA-i B) ' 	 handling qualities with good damping and natural frequency 

characteristics as shown: 

Oo maxJJE)*JJ,  and  II(D(x)11:5(Do• 	 5 	(s2+2~PwPS+wP2)(Dm =g,6,, 	 (28) 

	

The stability proof uses the following Lyapunov candidate 	
( 	

g 
s2 +2~ w +w e 	S 	 (29) 

function : 	
g) -gg '°" 

 

V(e,6)=e 7Pe+trace(6'F-6) 	 (21) 	 (s2+2~,w,s+w,2)Pm=9,6„ d 	 (30) 

Then, V(e,O) is evaluated as 

V(e, 6)s-c. hell- c2)
2 +c1c22-vc3(I#D ,4)2-C3c42 	 (22) 

Let 

Bb {(e,b):c. hell - c2)2+vc3(IOII -c4)2scic22+vc3c42} 	 (23) 

Then, V(e,O)>0 inside of B b, but V(e,O):50 outside B b . 
Therefore V(e,O) is a decreasing function outside of B b . This 
implies that trajectories (e(0),O(0)) will be uniformly ulti-
mately bounded after some time t>T. 

The maximum value of the modification parameter vm_ 
can be established to ensure the largest V(e,O):50. Then, for 
any 0<v<vmaz,  J(D (x)JJ<(io  is bounded. 

The modification parameter v is dependent on the a priori 
knowledge of the bounds on the uncertainty as well as the 
disturbance to guarantee stability. Moreover , in the presence 
of a disturbance, i.e., c2;'01  then for the standard model-
reference adaptive control which corresponds to v -0, K is 
unbounded. This implies an unbounded parameter variation 
for the standard model-reference adaptive control in the pres-
ence of a disturbance . This observation is consistent with the 
parameter drift phenomenon. 

Adaptive Flight Control with Optimal Control Modifica-
tion Adaptive Law 

Consider the following adaptive flight control architecture 
as shown in FIG. 2. The adaptive flight control architecture 
125 comprises an aircraft plant 130, a reference model 135 
that translates rate commands into desired acceleration com-
mands, a nominal proportional -integral (PI) feedback con-
troller 140 for rate stabilization and tracking, an adaptive 
controller 145 with the optimal control modification adaptive 
law 150 or its alternative embodiments 155 and 160, and a 
dynamic inversion controller 165 that computes actuator 
commands using desired acceleration commands. 

Adaptive flight control can be used to provide consistent 
handling qualities and restore stability of aircraft under off-
nominal flight conditions such as those due to failures or 
damage. Suppose the aircraft plant 130 is described by  

10 	
where (D m, Om, and Rm  are the reference bank, pitch, and 

sideslip angles; cop , wg, and w,, are the natural frequencies for 
desired handling qualities in the roll, pitch, and yaw axes; ~P , 
fig, and s,, are the desired damping ratios; Slat,Sio  ,and6,.ad are 

15  the lateral stick input, longitudinal stick input, and rudder 
pedal input. and gP, gq, and g,, are the input gains. 

Let p_-(D_, q_-O_, and r_--P_, then the reference model 
135 can be represented as 

zm =-KPxm -Kf o ixm dt+Gr 	 (31) 

20 where x_-[p_ qm  r_ ] T Kp-diag(2~Pwp,2~^,2 ~ ), 
K -diag(wP2,Wg2,w,,2)-Q2 , G-diag(gp,gglgr),  and  r=[6,,, 6,,, 
6—d] 

In an alternative embodiment, the reference model 135 
could be a first-order model in the roll axis as shown: 

25 

(s+0)P)Pm=g'6" 	 (32) 

Assuming the pair (A,,,B,) is controllable and the outer 
loop state vector z(t) is stabilizable , the nominal PI feedback 
controller 140, defined by u e, is given by 

30 

ue  K,(x m -x)+Kfo`(xm -x)dt 
	

(33) 

and the adaptive controller 145, defined by uad(t), is given 
by 

35 	u,-6 1 T(D(x,z) 	 (34) 

Assuming B, is invertible, then the dynamic inversion con-
troller 165 is computed as 

u+Bj 1 (x_ A1lx-f112z +ue  u,) 
	

(35) 

40 In a more general case when the control vector has more 
inputs than the number of states to be controlled , then an 
optimal control allocation strategy using a pseudo -inverse 
method is used to compute the dynamic inversion controller 
165 as 

45 	
u=Bt T(BtBt T) 1 (x.., Attx -Atzz+ue uQa) 	 (36) 

Let e-u.,(xm -x)dti xm -x] T  be the tracking error, then the 
tracking error equation is given by 

z=,4 1 1x+,412z+B. u+fi (xz) 
	

24 	
e=Ame+B[o 1 T(D(xz) fl (xz)1 

	
(37) 

50 
z=A21x+A22z+B2u+f2(xz) 

	
(25) 	where 

whereAli  and B,, i=1,2, j=1,2 are nominal aircraft matrices 
which are assumed to be known, x=[p q r] T  is an inner loop 
state vector of roll, pitch, and yaw rates; z=[A(D Aa AR AV Ah 
AO] T  is an outer loop state vector of aircraft attitude angles, 
airspeed , and altitude ; a=[Aria  Ab e  A6,,] T  is a control vector of 
aileron, elevator, and rudder deflections ; and f (x,z), i=1,2 is 
an uncertainty due to off-nominal events which can be 
approximated as 

f(xz)_6*a T(D(xz)+E(x,z) 	 (26)
60 	Let Q=2cI where c>0 is a weighting constant and I is an 

identity matrix, then can be shown that 
where O*, is an unknown , constant ideal weight matrix, 

and (D(x,z) is the input basis function vector chosen to be 

(Dx 	T T T T T T x  T 	
K; 1  Kp  + Kp 1 (K; + /) 	K, 1 	 (40) 

	

( z)=[x px qx rx z u (z)] 	 (27) 65 
	P = c 

 
>0 

K-1 	K-1 (/ + K 1 ) 
The inner-loop rate feedback control is designed to 	 p 

improve aircraft rate response characteristics such as the 
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-continued 
K: i 	 (41) 

PB=c 
Kpi (l+K; i ) 

B 7P4m iB=—cK z<0 	 (42) 

Then, the optimal control modification adaptive law 150 
for a nominal PI feedback controller is specified by 

Oi —F[(D(x,z)e 7PB+"(x,z)(D 7(x,z)O JKs  2] 	 (43) 

which can also be expressed as 

Oi —F[(D(x,z)e 7PB+"(x,z)(D 7(x,z)O 1 Q-4] 	 (44) 

Suppose the nominal feedback controller is of a propor-
tional-integral -derivative (PID) type in an alternative 
embodiment with 

ue  K,(x m —x)+Kf, [x m (t)—x(t)]A+K d(zm —z) 	 (45) 

where Kd~l iag(k, ,k, ,k, ). 
Then, the optimal control modification adaptive law 155 

for a nominal PID feedback controller is specified by 

Oi —F[(D(x,z)e 7P(I+Kd)-1B+"(x,z)(D 7(x,z)O 1Ks  2] 	(46) 

where 

K: 1 	 (47) 

Kp i U+(I+ Kd)K i ] 

Furthermore, in yet another alternative embodiment, the 
nominal feedback controller is of a proportional type 

ue  K,(x m —x) 	 (48) 

associated with a first-order reference model with K,-0. 
Then, the optimal control modification adaptive law 160 

for a nominal proportional feedback controller is specified by 

6 1 =—cF[(D(x,z)(x_'—x 7)KP i +v(D(x,z)(D 7(x,z)O,K, 2] 	 (49) 

2.1 Adaptive Flight Control Simulations of F-18 Aircraft 
To demonstrate the effectiveness of the adaptive flight con-

trol architecture 125, simulations were conducted on a dam-
aged F-18 aircraft model of NASA F/A-18 research test air-
craft, tail number 853 as shown in the photograph of FIG. 3, 
with both the standard baseline dynamic inversion controller 
and the adaptive controller with the optimal control modifi-
cation adaptive law 150. The results demonstrate the effec-
tiveness of the proposed modification in tracking a reference 
model. 

The flight condition is a test point of Mach 0 . 5 and an 
altitude of 15,000 ft. All of the pilot inputs to the simulation 
time histories are from "canned" piloted stick inputs and no 
attempts to correct for the aircraft attitudes are added to the 
piloted inputs. This "canned pilot input' method was used 
only for comparison purposes . For instance , when a failure is 
imparted on the aircraft and the resulting attitudes change 
minimally, the control system is said to have good restoring 
properties. All the test cases have a one frame delay (1/100 
second) at the actuators for added realistic implementation 
purposes. 

The first case is anA -matrix failure imposed on the aircraft 
with a destabilizing CG shift or a C ma  change. FIG. 4 shows a 
40-sec time history in which 3 longitudinal pilot stick inputs 
are presented and the failure is imposed at 13 sec. In the first 
13 sec, a normal health response shows how the pitch rate 
follows the commanded pitch rate (green) and the stick com- 

14 
mand (black). After the failure is inserted, the response with-
out adaptation shows that the aircraft is stable but with low 
damping and 2 overshoots (blue). With adaptation on (red), 
the response is much better and follows the commanded pitch 

5 rate. By the third pilot input, the adaptation response is close 
to the commanded pitch rate. Notice the low tracking error 
between q, ,f  and q before the failure and the better tracking 
response with adaptation after the failure . FIG. 4 also shows 
the angle of attack and normal acceleration responses asso- 

io ciatedwiththeCma change; and that the system behaves better 
with adaptation than without. 

FIG. 5 shows the tracking error in the roll, pitch and yaw 
axes along with the adaptation weights. The errors are better 
with adaptation and the weights are convergent. The results 

15 show that the adaptation helps with respect to the tracking 
task (q-command) and increases the damping. FIG. 6 shows 
the surface positions with and without adaptation. The actua-
tor models are high-fidelity fourth-order models with time 
delays. As expected, the surfaces are well-damped with adap- 

20 tation on. After observing the weights and how they converge, 
the control surfaces, and the tracking errors, the final analysis 
for the A-matrix failure example shows that adaptation helps 
compared to the no adaptation case. 

The second case is a B-matrix failure imposed on the left 
25 stabilator 13 sec into the simulation run. The left stabilator is 

jammed (or locked) at +2.5° from trim. FIG. 7 shows a 40-sec 
time history of the longitudinal responses. During the first 13 
sec, the pitch rate follows the commanded pitch rate, but after 
the failure insertion there is a large downward motion and the 

30 system cannot track very well. Aircraft response comparison 
with this B-matrix failure shown in FIG. 7 indicates a better 
response with adaptation on. Pitch rate follows the reference 
better with adaptation on. The lateral-directional responses 
from the same longitudinal command also show better air- 

35 craft response with adaptation, as shown in FIG. 8 . The roll 
rate with adaptation is smaller than without adaptation. The 
bank angle and sideslip angle both come back to wings-level 
with adaptation but stay 10° and 8°, respectively, without 
adaptation . Note that there are no lateral-directional pilot 

40 inputs (p,, f and r,, f are zero). FIG. 9 shows smaller tracking 
errors and converging neural networks weights. Analysis 
indicates the system is stable and the performance is better 
with adaption. 

Simulations is also conducted to show that the adaptive 
45 gain F can be increased and the aircraft will remain stable. 

The optimal control modification adaptive law 120 and the 
various alternative embodiments thereof 150, 155 , and 160 
enable fast adaptation with good damping. The test case 
changes the adaptation rate from 0.5 to 50 while keeping the 

50 modification parameter v constant at 1. FIG. 10 shows the 
same A-matrix failure occurring at 2 sec instead of at 13 sec 
and is followed by a pitch input. As FIG. 10 shows, the pitch 
rate tracking error is large with an adaptive gain F of 0.5 
compared to 50. The weights are also shown, and the larger 

55 adaptive gain increases the size of the weights as expected. 
Note that in both cases the system weights are convergent and 
the tracking error is better with the larger adaptive gain. FIG. 
11 shows what happens when the modification parameter v is 
changed from 0.25 to 1 while keeping the adaptive gain 

60 constant at F-5. The tracking error has low damping with the 
lower modification parameter v of 0.25 as expected . In both 
cases the weights converge to reasonable values. The results 
and analysis show that larger adaptive gains can be tolerated 
with the optimal control modification adaptive law 120 and 

65 the various alternative embodiments thereof 150, 155, and 
160. The modification parameter v can be used to tune the 
desired performance. 
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2.2 Pilot Study in Motion-Based Flight Simulator 
To compare the effectiveness of the optimal control modi-

fication adaptive law 120 and the various alternative embodi-
ments thereof 150,155 , and 160 , a pilot study was conducted 
in the Advanced Concept Flight Simulator (ACES), as shown 5 
in the photograph of FIG. 12, in the Crew-Vehicle System 
Research Facility (CVSRF) at NASAAmes Research Center. 
The ACES is a motion-based flight simulator which employs 
advanced fly-by-wire digital flight control systems with a 
flight deck that includes head-up displays , a customizable io 
flight management system , and modern flight instruments 
and electronics. Pilot inputs are provided by a side stick for 
controlling aircraft in pitch and roll axes. 

The pilot study evaluated a number of adaptive control 
methods. A high-fidelity flight dynamic model was developed 15 

to simulate a medium-range generic transport aircraft. A 
number of failure and damage emulations were implemented 
including asymmetric damage to the left horizontal tail and 
elevator, flight control faults emulated by scaling the control 
sensitivity matrix (B-matrix failures), and combined failures. 20 
Eight different NASA test pilots participated in the study. For 
each failure emulation , each pilot was asked to provide Coo-
per-Harper Ratings (CHR) for a series of flight tasks, which 
included large amplitude attitude capture tasks and cross-
wind approach and landing tasks. 25 

Seven adaptive flight control methods were selected for the 
pilot study that include: the e-modification as the baseline 
controller, the optimal control modification adaptive law 120, 
and five others. Based on the pilot CHR, the optimal control 
modification adaptive law 120 , indicated in FIG. 13 by the 30 
acronym OCM, performed the most consistently well over all 
flight conditions , as shown in FIG. 13. 

Linear Asymptotic Property of Optimal Control Modifica-
tion Adaptive Law 

Adaptive control is a promising technology that can 35 

improve performance and stability of an uncertain system. 
Yet, in spite of all the progress made in the field of adaptive 
control , certification of adaptive control for use in production 
systems, mission- or safety-critical systems remains far in the 
future. This is because a certification process has not been 40 
developed for adaptive control and the only certification pro-
cess applicable to flight control systems is based on classical 
control metrics. Performance metrics such as overshoot and 
settling time, and stability metrics such as phase and gain 
margins are frequently used for certification of flight control 45 
systems. 

On the other hand , adaptive control as a nonlinear control 
method is not endowed with any nice properties or metrics 
associated with linear classical control. The only tool avail-
able for analyzing stability of nonlinear control systems is the 50 
Lyapenov stability theory. This theory, while it is a powerful 
technique for stability analysis, cannot be used to provide an 
evidence of stability margins in the context of linear classical 
control. The lack of analytical methods for analyzing stability 
margins and performance metrics which are often required 55 
for certification of a flight control system. Therefore, this 
challenge can be overcome by either developing a new certi-
ficationprocess for adaptive control or adopting new methods 
for certain classes of adaptive control that can provide an 
evidence of classical control metrics. 60 

The optimal control modification adaptive law 120 and the 
various alternative embodiments thereof 150,155 , and 160 as 
taught by the present invention exhibit an important property 
called linear asymptotic property. This limiting property 
effectively reduces the optimal control modification adaptive 65 
law 120 and various alternative embodiments thereof to a 
linear feedback control in the limit as the adaptation tends to  

16 
the equilibrium or under fast adaptation when a large adaptive 
gain is used. Therefore , if an open-loop system is linear with 
uncertainty, then the linear asymptotic property can be 
invoked to show that the feedback control system will be 
linear in the limit. This property therefore affords certain 
advantages over conventional adaptive controls in the ability 
to allow the optimal control modification adaptive law 120 
and the various alternative embodiments thereof 150, 155, 
and 160 to be analyzed for performance and stability metrics 
in a linear system context. 

To further elucidate the concept of linear asymptotic prop-
erty, consider the following linear system with a matched 
linear uncertainty and an unmatched disturbance: 

z=Ax+B(u+O *Tx)+w 	 (50) 

The optimal control modification adaptive law 170 for this 
system is given by 

6--Fx(e TP-vx T6B TP4m i)B 	 (51) 

The optimal control modification adaptive law 170 tends to 
an equilibrium when 6-0 as t-- or when E -1 6-0 under 
fast adaptation as F­ . In the limit, the linear asymptotic 
property of the optimal control modification adaptive law 170 
is described by 

1  
OT  x - (B T  Am T  PB) i 	

52 
BT  Pe 	 ( ) 

V   

Then, the feedback control system tends to a linear asymp-
totic system in the limit as 

z (=Am  +V P'AmP+BO*T ~x-V P'AmPxm 	 (53) 
+Bm r+w 

111 	v 	 v 

The maximum value of the modification parameter v m_ be 
established such that the matrix 

Am  + - P-i AmP+BO*T  
V 

is a stable Hurwitz matrix with negative real part eigenvalues. 
The linear asymptotic property of the optimal control 

modification adaptive law 170 is quite useful since it can be 
analyzed by many linear analysis tools. Moreover , because of 
its linear asymptotic property, the feedback control system 
has a scaled input-output behavior under fast adaptation. That 
is, if r(t) is scaled by a multiplier c, then x(t) is scaled by the 
same amount. More specifically, let x(t)=x o (t) be theresponse 
due to r(t)=r jt), then if r(t) –cr jt) where c is a constant, then 
it follows that x(t)–cxo(t). This scaled input-output behavior 
helps improve predictability of the optimal control modifica-
tion adaptive law 170 under fast adaptation. 

The linear asymptotic property can be used to compute the 
steady state tracking error in the limit as t-- or E--. 

Hm llell = 	 (54) 

-AmiBm+(Am+V 
v 	 v

P- 'AmTP+BO*T ) V P-i AmPAmi +l)Bm  

Ilrll_ 
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More importantly, the linear asymptotic property also 
affords another advantage in that stability margins of a feed-
back control system can be analyzed in a linear system con-
text. 

Consider a first-order time-delay SISO system with the 5 
optimal control modification adaptive law 170. 

z=ax+b[u(t-td)+0*x] 	 (55) 

u=-k x+k r-0x 	 (56) 10 

6--y(xeb-vx2am i b20) 	 (57) 

with a and b known, 0* as the parametric uncertainty, and 
a_=a-bkx<0. 

Invoking the linear asymptotic property, the equilibrium 15 
value of Ox is  

18 
Using the linear asymptotic property of the optimal control 

modification adaptive law 170, the input-delay feedback con-
trol system tends to a linear asymptotic system y in the limit 
as 

z = (A + BO* T  )x + 	
1 

(-BK 
v 

x + 
- 

P_ 1  A. 	
(65) 

P)x(t - td) - 

1 
-P-'A„T,Pxm(t-  td)  +Bm r(t- td) +w 
V 

Using the mean value theorem, r(t-t d) can be expressed as 

Y(t)— r(r)—
r(t—td) 

td 

(66) 

9x= va
-e 	 (58) 

20 	
Thus, the input-delay feedback control system also 

m 	 includes dynamics of the reference model and the reference 
command signal. The combined system is expressed as 

Then, the feedback control system becomes in the limit 
z=A z(t)-A dz(t-td)+v 	 (67) 

am  

	

(59) 
25 	where z=[x xm r] T  z=[w 0 0]T and  am  

z=(a+bB*)x+(-bkx + v)x(t —td)— 
v 
 xm(t-td)+bk,r(t —td) 

	

A + BO* T  0 0 	 (68) 

If 0 * is a non-destabilizing uncertainty with a-bkx+bO*<0, 	 0 	Am  0 

	

then the modification parameter v has no upper limit. On the 30 	A= 
other hand, if 0* is a destabilizing uncertainty with a-bk x+ 	 6 	6 1  
bO*>0, then 0<v<vm_  where 	

td 

BKxx- 1 P 1 A m P i P I AmP 	0 	
(69) 

V 	v 

vm_ = - 
	am 	 (60) 35 	Ad = 	0 	 0 	0 

a - bkx  + bB* 	 1 
0 	 0 	— 

td 

This system can be analyzed using linear analysis tools to 
estimate linear stability margins. To simplify the analysis, let 
r(t)=I and x_(t)=1. Then it can be shown that the effective 40 
cross-over frequency, time delay margin, and phase margin of 
the linear asymptotic system are given by 

The modification parameter v is chosen such that the 
matrix Am +I/vP-IA_ P+BO* T is a Hurwitz matrix. Then, if 
the input time delay is given, then the modification parameter 
v must also satisfy the stability condition of a delayed system 
as 

bkx  + a`" 
z 

 - (a + bB* )z 
V 

(61) 45 
det(Tw-A,+A de"'`l)-O (70) 

Otherwise, the stability condition of a delayed system can 

1 	+ be 	 (62) 	be used to calculate stability margins of the input-delay  feed- 

td  = os 	 back control system. 

	

bkx  - V 	 50 	
For low-order systems, the stability condition of a delayed 

system can be analyzed easily. For higher-order systems, the 
analysis may become more tedious. Thus, in an alternative 

(D-O)td 	 (63) 	embodiment, the linear asymptotic property can be used with 

Note that if v-
0, then the optimal control modification 55 a matrix measure method for estimating stability margins of 

	

adaptive law 170 reverts to the standard model-reference 	
the optimal control modification adaptive law 170. The effec- 

	

adaptive control. Then, the time delay margin tends to zero 	
tive cross-over frequency and time delay margin of a linear 

	

since w-- andthus td-0 as v-0. This is consistent with the 	
asymptotic feedback control system using the optimal control 

	

fact the standard model-reference adaptive control has zero 	
modification adaptive law 170 are given by 

	

robustness when the adaptive gain becomes large, whereas 60 	
w°µ( ~A~)+I  dll 	 (n) 

the optimal control modification adaptive law 170 retains its 
robustness with a finite time delay margin. 

Thus, in general, consider the following input-delay linear 
system with a matched linear uncertainty and an unmatched t 1 _, [µ(A,) +µ(fA d)

] 	
(72) 

disturbance: 

	

65 	d = WCOS 	
IIAdII 

z=Ax+B[u(t-td)+O*Tx]+w 	 (64) 
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where the matrix measure 

	

B(Q _ 	
c + c*  

~(  2  

is defined as the largest eigenvalue of the average of a com-
plex-valued matrix C and its conjugate C*. 

In yet another alternative embodiment, the linear asymp-
totic property can be used with a matrix measure method for 
estimating stability margins of the optimal control modifica-
tion adaptive law 170 for an adaptive control system with a 
constant or zero reference model where x_(t) and r(t) are 
constants. Then, the effective cross-over frequency and time 
delay margin of a linear asymptotic feedback control system 
using the optimal control modification adaptive law 170 are 
given by 

	

=u(- jA- jBO*T)+ BKx- 
1 

 -P'A.P 	
(73) 

V  

	

1 	µ(A+BO* T)+~j[BK--'P 'A,T p]) 	
(7

4)  
td = —COS-1 	

,,,  111111 	 V  

	

m 	
BK - -P- iAT 

v 

The linear asymptotic property can be used to compute the 
modification parameter v to guarantee stability for a given 
specification of the uncertainty O*. In an alternative embodi-
ment, the Lyapunov stability theory can be used to establish 
the maximum value of the modification parameter v m,,. Tak-
ing the limit of the largest V(e,0) as J(D(x)JJ-JJxJJ--  yields 

20 

4A», (BT  AmT  QAm' B)11 PBI1 2 	 (79) 
vmax = 	

Ami,(Q)JJBTPAM-1BJ 12 

5 

Since the uncertainty is no destabilizing , the maximum 
value of the modification parameter v m_ is found to be inde-
pendent of the upper bound on the uncertainty. 

Consider a linear plant with unmodeled dynamics or a 
10 non-minimum phase plant given by a transfer function 

Y = W p  (s)u = k, Rp u 	
(80) 

15 

where kP  is a high-frequency gain, and ZP (s) and RP (s) are 
monic Hurwitz polynomials of degrees mP  and nP, respec-
tively, and nP-mb>I . 

20 
The reference model is given by a transfer function 

Ym = W (s)r = km 	
r 

	

Rm (s) 	

(81) 

25 

where km  is a high-frequency gain, and Z_(s) and R_(s) are 
monic Hurwitz polynomials of degrees mm  and nm, respec-
tively, and nm-mm >-1. 

Let nP-mP>nm-mm . So the SPR condition is no longer 
30 possible to ensure tracking of the reference model. Stability 

of an adaptive control system cannot also be guaranteed with 
the standard model reference adaptive control. 

Suppose an adaptive controller is designed with the opti-
mal control modification adaptive law 170 as 

35 

u=kyy+krr 

	

v(e,o)s-gym, (Q)(Ilxm 	 c22+Vk_i,,(B TAm 	 where 

	

-QAm 'B) x 
~2r42 
	 (75) 

Then, the maximum value of the modification parameter 40 	
ky°yy  ye-vky) 

vm_ to render V(e,0):50 is a function of the upper bound on 
the uncertainty as follows: 

	 kr°yr(re-vrzkr) 

Ami, (Q)Ami, (B T  AmT  QA mi  B)  
vmax = 

IIBT PAmi BI12 Oo 

Using the linear asymptotic property of the optimal control 
modification adaptive law 170, the equilibrium value of the 

(76) 45 adaptive controller a can be computed as yy-- and y,.--. 

(82)  

(83)  

(84)  

Yet, in an alternative embodiment where the uncertainty is 
non-destabilizing , then the nominal feedback control system 50 
with no adaptation is robustly stable if the following condi-
tion is satisfied 

u= 2Ym - 2Y 
	

(85) 

The asymptotic closed-loop transfer function can now be 
computed as 

11(D(x)11 <- 
 Ami,(Q)Ilell-2Am_(P)Wo  

211PBIIOo  

(77) 55 	 2Wp(s)Wm(s) 	2kmk,Zp(s) m(s) 	 (86) 
Y 	v+ 2Wp() 	 ()( s r  Rm  s vRp() 	 )) s +2kP  Z 	r  p( s  

This condition is obtained from the Lyapunov stability 
theory using the following Lyapunov candidate function: 

V(e)=e'Pe 	 (78) 

Then using the largest V (e, O) for the optimal control modi-
fication adaptive law 170, the maximum value of the modifi-
cation parameter v m_ to render V(e,0):50 is established for 
non-destabilizing uncertainty as 

The modification parameter v can be chosen such that the 
60 linear asymptotic closed-loop transfer function has closed-

loop stability. 
To demonstrate the linear asymptotic property of the opti- 

mal control modification adaptive law 170 , three examples 
are provided: 1) linear systems with input time delay, 2) linear 

65 systems with unmodeled dynamics, and 3) non-minimum 
phase linear systems. All these three classes of problems 
generally challenge conventional adaptive control methods. 
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Consider the following linear control system with input 
time delay and a reference model 

z=ax+b[u(t-td)+6*x] 	 (87) 

zm =amxm +bm r 	 (88) 

with a=am=-I, b=bm=1, 0*=2, and r(t)=1. 
The controller is given by 

u=kr-6x 	 (89) 

where 0(t) is computed by the adaptive control modifica-
tion adaptive law 170. 

The maximum value of the modification parameter v_ is 
computed from the linear asymptotic property and the 
Lyapunov stability theory to be 

2am  z 
v.- = nil 

l- am  bB* ' -- 	
- min(1, 1) = 1 

Choose v-0.2<1. The time delay margin for the linear 
asymptotic system is calculated to be 

22 
For comparison, the responses with both the a-modifica-

tion and e-modification are also shown in FIG. 16. The 
a-modification does not exhibit the scaled input-output 
behavior and the e-modification exhibits oscillations at a dif- 

5  ferent frequency and amplitude as the reference command 
signal is doubled. This demonstrates that both the a-modifi-
cation and e-modification are highly nonlinear adaptive con-
trol. The optimal control modification adaptive law 170, on 
the other hand, behaves more or less like a linear system. This 

10 linear asymptotic property, therefore, makes the optimal con-
trol modification adaptive law 170 much more predictable 
than conventional adaptive control methods. 

Consider the linear system with unmodeled dynamics in 
15 the well-known Rohrs counterexample which was one of the 

first studies that shows the non-robustness of the standard 
model-reference adaptive control (MRAC) for systems with 
unmodeled dynamics. 

20 

2 	229 	 (95) 

Y = s+1sz+30s+229" 

m =z -1 = 4.8990 rad/ sec 
v 

25 The system has a relative degree 3 and is minimum phase 
(91) 	since there are no zeros. 

The reference model is specified as 

1  
td = 	 cos -1  v = 0.2795 sec 	

(92) 

~V'71  

The steady state error is estimated to be 

[- am 
 _ 	am 	1 	 (93) 

e= 	+ ~am +—+bB) -+lbm r=-0.5 
V 	v 

The equilibrium value of 0 is computed to be 

0 = 	e 	= 	e 	= 1.6667 	
(94) 

vamibx vamib(xm  - e) 

A time delay of 0.0020 sec in injected at the input in the 
simulation. This time delay causes the standard model-refer-
ence adaptive control to go unstable. The adaptive control 
system with the optimal control modification adaptive law 
170 is completely stable, as shown in FIG. 14. The simulation 
results agree with the steady state error  e  and the equilibrium 
value 6. 

When a time delay equal to the time delay margin of 0.2795 
sec is injected at the input, the adaptive control system begins 
to diverge, as shown in FIG. 15. Thus, the numerical evidence 
of the time delay margin is also in excellent agreement with 
the analytical time delay margin computed from linear 
asymptotic property. 

To illustrate the scaled input-output linear behavior of the 
optimal control modification adaptive law 170, the reference 
command signal is doubled so thatr(t)=2. The optimal control 
modification adaptive law 170 exhibits the scaled input-out-
put property, as shown in FIG. 16. 

30 	 3 
Ym = 	 r s+3 

(96) 

The reference model has relative degree 1. Since the rela- 
35 tive degree of the reference model is less than the relative 

degree of the plant, perfect tracking is not possible. Adaptive 
control of systems with relative degrees greater than I is 
generally more difficult since the model reference cannot be 
chosen to be strictly positive real (SPR). 

40 
The original controller in the Rohrs counterexample is 

based on the standard model-reference adaptive control and is 
given by 

45 	u=kyy+krr 	 (97) 

ky°yje 	 (98) 

50 	
k °y rre 	 (99) 

where e--ym -y, and ky  and k,, are initialized with ky(0)=-
0.65 and k,.(0)=1.14 

The reference command signal is given by 

55 
r=0.3+1.85 sin 16.1t 	 (100) 

where the frequency 16.1 rad/sec is the frequency at which 
the closed-loop transfer function with ky=ky(0) has a -180° 
phase shift which implies a 0° phase margin. The closed-loop 

60 system is unstable, as shown in FIG. 17. 

The original controller is revised using the optimal control 
modification adaptive law 170 as 

65 	
ky°yy(ye-vx'ky) 	 (101) 

k °y r(re-vrzkr) 	 (102) 
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Based on the linear asymptotic property, the revised con-
troller asymptotically tends to 

2ym  — 2y 	6r 	2y  
u= 	— 

v 	v(s + 3) 	v 

Then the linear asymptotic closed-loop transfer function is 
obtained as 

24 
Consider the following non-minimum phase linear system 

z=ax+u-2z+w 
	

(108) 

(109) 

y=x 	 (110) 

where a<0 is unknown, but a=-1 for simulation purposes. 
The system is non-minimum phase with a transfer function 

(103) 5 	
z--z+u 

10 

Y 	 2748 	 (104) 

r  v(s+3)~s1 +31st+259s+229+
916  

v 

It can be shown that the effective cross-over frequency and 
phase margin of the closed-loop transfer function can be 
obtained as functions of the modification parameter v as 

w6  + 443.4  +52883.2  + 2292  — 916 2 — 0 	 ( 105 ) 
V2  

 w3  +259. 	 (106) 
=mtd= tan ' ~ 31mz-229 

The plot of v versus (D and w is shown in FIG. 18. Notice 
that at v-0.117, the cross-over frequency w=16.1 rad/sec has 
zero phase margin. This explains the instability of the adap-
tive control system in the Rohrs counterexample. A good 
phase margin of (D=45° is selected to guarantee stability. This 
corresponds to v=0.426. 

The linear asymptotic closed-loop transfer function with 
v-0.426 is computed to be 

Y 	 2748 	 (107) 

r 	0.426s4  + 14.484s' + 149.952s2  + 

1344.556s + 3040.662 

The adaptive control system is therefore robustly stable 
with an effective phase margin of 45° in the limit. The linear 
asymptotic response y(t) and control signal u(t) evaluated 
analytically agree very well with the simulation results of y(t) 
and r(t), as shown in FIG. 19. Thus, the linear asymptotic 
property of the optimal control modification adaptive law 170 
is demonstrated to be able to handle linear uncertain systems 
with unmodeled dynamics. 

The a-modification and e-modification also exhibit mini-
mum values of the modification parameters at which the 
adaptive control system in the Rohrs counterexample begins 
to stabilize. However, unlike the optimal control modification 
adaptive law 170, the a and e modification parameters can 
only be found by trial and error, whereas the modification 
parameter v is found analytically by utilizing the linear 
asymptotic property of the optimal control modification 
adaptive law 170. 

Non-minimum phase plants are well-known to be very 
difficult to control by adaptive control. Output feedback adap-
tive control generally relies on the SPR property to ensure 
stability. For non-minimum phase plants, the SPR property 
does not exist, thereby destroying the ability to analyze sta-
bility of adaptive control using the SPR property. The linear 
asymptotic property of the optimal control modification 
adaptive law 170 can be used to analyze non-minimum phase 
systems. 

	

(s  — 1)u  + (s +  1)w 	 (111) 
y 	(s—a)(s+1) 

15 	An adaptive regulator is designed with the optimal control 
modification adaptive law 170 as 

u=kyy 	 (112) 

20 	ky — yyV +vyky) 	 (113) 

Since the system non-minimum phase, the standard model-
reference adaptive control will result in instability. Therefore, 
there exists a minimum value of the modification parameter v 
that stabilizes the adaptive control system. Using the linear 

25 asymptotic property, this minimum value can be computed 
analytically. 

Using the linear asymptotic property, the equilibrium value 
of ky  is k,--1/v. Therefore, the linear asymptotic closed-
loop transfer function is 

30 

Y 	 s+1 	 (114) 

W — 	 1 
(s—a)(s+1)+—(s-1) 

V 
 35  

This transfer function is stable for any modification param-
eter v<-1/a. The steady state closed-loop transfer function is 
equal to 

40 

Y 	1 	 (115) 

W — 	1 
a+— 

v 

45 

The response of the adaptive control system with v=2>-1 /a 
since a=1 for a unit step disturbance w(t) —1 is shown in FIG. 
20. The numerical results are in agreement with the equilib-
rium value kcy(t)=-1/2 and the steady state response y(t)=2. 

50 Optimal Control Modification Adaptive Law with Time-
Varying Adaptive Gains 

The optimal control modification adaptive law 120 and the 
various alternative embodiments thereof 150, 155, 160, and 
170 as taught by the present invention are normally imple- 

55 mented by a constant adaptive gain matrix L. In situations 
when large adaptive gains or large input amplitudes are 
present, robustness of the optimal control modification adap-
tive law 120 and the various alternative embodiments thereof 
150, 155, 160, and 170 can be improved by employing two 

60 methods that provide mechanisms to change the adaptive gain 
matrix F with time. 

4.1 Covariance Adaptive Gain Adjustment 
In the presence of large uncertainty, an adaptive control 

system needs to be able to adapt rapidly to regain perfor- 
65 mane. Fast adaptation is referred to the implementation of 

adaptive control with a large adaptive gain to reduce the 
tracking errorrapidly. However, a large adaptive gain can lead 
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to high-frequency oscillations which can adversely affect 
robustness of an adaptive control system. As the adaptive gain 
increases, the time delay margin for a standard model-refer-
ence adaptive control decreases, hence loss ofrobustness. The 
optimal control modification adaptive law 120 and the vari-
ous alternative embodiments thereof 150, 155, 160, and 170 
as taught by the present invention can achieve fast adaptation 
with robustness. While in theory fast adaptation may be 
desired to improve tracking performance, in practice when 
the adaptation has achieved the tracking performance objec-
tive, fast adaptation usually may no longer be needed. Main-
taining fast adaptation even after the adaptation has achieved 
its objective can result in persistent learning. At best, persis-
tent learning would do nothing to further improve tracking 
performance once the adaptation has achieved its objective. 
At worst, persistent learning may tend to reduce stability 
margins which is not highly desired. 

In a preferred embodiment, the optimal control modifica-
tion adaptive law 120 and the various alternative embodi-
ments thereof 150, 155, 160, and 170 can include a covari-
ance-like adjustment mechanism to enable the adaptive gain 
matrix E to vary in time so as to prevent persistent learning 
which can reduce robustness. The covariance adaptive gain 
adjustment method can also include a forgetting factor in a 
similar practice as a standard recursive least-squares estima-
tion algorithm. The covariance adaptive gain adjustment 
method allows an arbitrarily large initial adaptive gain to be 
used to enable fast adaptation to reduce the initial transients 
rapidly. The covariance adaptive gain adjustment method 
then continuously adjusts the adaptive gain toward a lower 
value as the adaptation continues, thereby achieving desired 
improved robustness while retaining tracking performance 
during the initial adaptation. 

Referring to FIG. 21 illustrating an adaptive control system 
175 comprising the same constituents as that in FIG. 1 and 
further including therein a covariance adaptive gain adjust-
ment method 175 as taught by the present invention. 

The adaptive gain matrix E in the optimal control modifi-
cation adaptive law 120 and the various alternative embodi-
ments thereof 150, 155, 160, and 170 is adjusted in a continu-
ous time-varying manner by the covariance adaptive gain 
adjustment method 175 as follows: 

f--qF(D(x)(D T(x)F 	 (116) 

where 0:5rl<vX_ i„ (B TA_-TQAm-1 B) is the adjustment 
parameter which depends on the modification parameter v 
and has an upper bound that is not present in the prior art. 

Using the standard Lyapunov stability theory, it can be 
shown that the optimal control modification adaptive law 120 
is stable and results in an uniformly ultimately bounded track-
ing with the following ultimate bound: 

~m_(P)62  + Am_(~ 1)K2 	
(117) 

Ilell P = 	
Ami'(P) 

where 

(11 s) 
VC6C, 

s=c2+FC2 
 

C  1  

26 
-continued 

K = C~ 
+ C22 + c1 2 

z 
	 (119) 

VC6 

for any modification parameter 0:5v<vmaz  where c 1  and c z  
are defined previously, 

10 	

C6 = [A,,,;a(BT A mT QA_'B) - ' I ],Do , and 

JIB  T PAm 1 BIIDo  

A,,,;a (BT  AmT  QA M-1  B) - 77 

15 

Using the same Lyapunov candidate function as in Eq. 
(21), then V(e,0) is evaluated as 

V(e,O)s-c i (lel-cz)'-vc60 0  -cl)'+c1 cz'+vc6c7' 	 (120) 
20 

It follows that V(e,0)<_0 outside the compact set 

Bb ((e,O)ER'xR °"P:c 1 (lel-c2)'+vc6(IIOI-c7) 
2, J C22+vc6c72 ] 	 (121) 

25 	Therefore, the solution is uniformly ultimately bounded 
for any modification parameter 0<v<vmaz. 

The maximum value of the modification parameter v m_ 
can be determined explicitly for three general cases: 

If the basis function (D(x) is bounded such that 114)(x)11<4) 0 , 

30 then there is no upper limit on the modification parameter v. 
Such basis functions include sin(x), cosy , e :

~2
, and many 

others. 
If the basis function (D(x) belongs to a class of functions 

such that J(D(x)JJ`JJxJJ,  then the largest V(e,0) with II (D(x)11:5 11xll 
35  is given by 

1- 411IIBT PAm1  BII202  
A,,,;a (Q)A,,,;a (BT  AmT 

QAm1 B) 

50 

This expression can also be used to determine the maxi-
mum value of the modification parameter v_ for the optimal 
control modification adaptive law 120 and various alternative 
embodiments thereof 150, 155, 160, and 170 by letting r) -0 

55 which yields 

A,,,;a (Q)A,,,;a (B T  AmT  QA M1  B) 	 (124) 
vmax = 

60 	 IIBTPAm1B11200 

If the uncertainty O* T(D(x) is non-destabilizing, then the 
feedback control system without adaptation is robustly stable. 
Using the Lyapunov stability theory with the candidate func- 

65  tion 

V(e, 6)s- c1(I 	xl-
c2)

2-vc6(IIDII-c7)2+c1c22
+[Vk_i, 

(B TAm TQAm 1B)— q]Ixl ~2 c72 	 (122) 

Then, V(e,0):50 requires 0<v<vm_  where the maximum 

40 value of the modification parameter v m_ is determined by 

(123) 

Um~ 

- Am;n (Q)A,,,;a (BT  AmT  QAm 1  B)  1 + 
2 IIBT PAm1BII202 

45 

V(e)-e TPe 	 (125) 
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V(e):50 implies 

II(D(x)11 < 
 A ;a(Q)llell -2A._(P)wo 	 (126) 

211PBIIOo 

Then, the largest V(e,0)is given by 

V (e,  0) :~ - e1(Ilxm - XI I  - e2) 2  - ve6(11011 - c7)2  + 	
(127) 

cici +[v;L i,(BTA-T QAm1 B) -17]
A,,,;a(Q)llell-2;Lm-(P)wo c2  

211PBIIOo  

28 
is referred herein to as the covariance adaptive gain adjust-
ment method 185 and is described by 

f—PF-gF(D(x) (D T(x)T 
	 (132) 

5 	where P -P T>0 is the forgetting factor matrix. 
Yet in another alternative embodiment, the covariance 

adaptive gain adjustment method 185 includes a normaliza-
tion factor which can also be used to change the time-varying 
rate of the adaptive gain matrix F(t). This alternative embodi- 

10 ment is referred herein to as the covariance adaptive gain 
adjustment method 190 and is described by 

C=/f- 	T  11 F(D(x)
(D

T  (x) F 
	 (133) 

The maximum value of the modification parameter v_ is 
15 1 + (D (x)R(D(x) 

then determined to be 
With a forgetting factor, the adaptive gain matrix F(t) can 

grow without bound. This can lead to poor robustness and 
(128) 20  may not improve performance. Therefore, a projection 

method can be used to limit the effect of the forgetting factor. 
The projection method for the covariance adaptive gain 
adjustment method 185 is given by 

2;Lmi,(BT  AmT  QAm1  B)11 PB11 2  
vm~ _ 

;Lmi, (Q)II BT PAm1  B11 2  

i7Am;a(Q)11 BT  PAm 1 B11 2  
1+ 1-Am

2;n(BTAmTQAm1B)IIPB112 

This expression can also be used to determine the maxi-
mum value of the modification parameter v_ for the optimal 
control modification adaptive law 120 and various alternative 
embodiments thereof 150, 155, 160, and 170 by letting q -0 
which yields 

4A», (BT  AmT  QAm 1  B)IIPB112 	 (129) 
vmax = 

Ami,(Q)11 BT PAm1 B11 2  

The covariance adaptive gain adjustment 175 generally 
causes the adaptive gain matrix F(t) to decrease uniformly 
from some initial values to small equilibrium values. In an 
alternative embodiment, the adjustment parameter rl  is a 
matrix whose elements are the adjustment parameters for 
each individual element of the adaptive gain matrix. These 
adjustment parameters can be selectively chosen to change 
the time-varying rates of the individual elements of the adap-
tive gain matrix F(t). The stability condition for the matrix of 
the adjustment parameters to be satisfied is 

>vm_(q)<vkm,n(B TAm TQAm 1B) 	 (130) 

In another preferred embodiment, the covariance adaptive 
gain adjustment method 175 includes a normalization factor 
which can also be used to change the time-varying rate of the 
adaptive gain matrix F(t). This alternative embodiment is 
referred herein to as the covariance adaptive gain adjustment 
method 180 and is described by  

25 

1 L8F-r7C(D(x)(DT (x)C], if C;i _ Fii(to) 	 (134) 

CV - 1 
l 	0 	 otherwise 

and the projection method for the covariance adaptive gain 
3o adjustment method 190 is given by 

i7C(D(x)(DT(x)C 	 (135) 
/3C - 	T 	 if C ;~ ~ C ;~(to) 

35 	w = 	1 + ~ (x)R(D(x) .. 

0 	 otherwise 

The effects of the covariance adaptive gain adjustment 
method 175 and the alternative embodiment thereof 180 is to 

40 gradually shut down the adaptation process. The effects of 
persistent learning and fast adaptation are therefore elimi-
nated. A problem associated with the covariance adaptive 
gain adjustment methods 175 and 180 is that, once the adap- 

45  tive gain matrix F(t) is reduced to an equilibrium value near 
zero, the adaptation process has to be restarted if a new 
uncertainty becomes present. Thus, in an alternative embodi-
ment, the covariance adaptive gain adjustment methods 175 
and 180 are used in conjunction with a resetting mechanism 

50 195. The adaptation process can be reset with a new initial 
value of the adaptive gain to restart the covariance adaptive 
gain adjustment methods 175 and 180 whenever a threshold 
criterion is satisfied. The resetting mechanism 195 is 
expressed as 

55 

C = 	 (136) 

C with F(ti ) = [ ; t ? ti when threshold is exceeded at t = ti 

C = - 
F  (D(x)(DT  (x) F 
	

(131) 	 C with C(0) = [ o 	 otherwise 

1 +(DT (x)R(D(x) 	 60 

where R=RT>0 is a positive-definite normalization matrix. 
Yet in another alternative embodiment, the covariant adap-

tive gain adjustment method 175 can include a forgetting 
factor which can also be used to change the time-varying rate 
of the adaptive gain matrix F(t.) This alternative embodiment 

where F, is a properly chosen new initial condition for the 
covariance adaptive gain adjustment methods 175 and 180 for 
t2A, when a new uncertainty becomes present. 

65 	The threshold should be chosen judiciously so that the 
trigger would occur appropriately to prevent false triggering. 
Also when a switching action occurs with a large change in 
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the value of the initial condition F,, to prevent transientbehav- 

	

iors, a filter 200 can be used to phase in the new initial 	
~ (P)~z +~ _ ([-1 )K2  

	

condition F , . Be for example only, a first-order filter can be 	Ilell <P = 	 .n(P)  

selected for the filter 200. Then 
5 

f 	(F—I',) 	 (137) 	where 

(141)  

(142)  

(143)  

for tE[t,,t,+nAt], where X>O, F=F(t) at t=t,-At computed 
from the previous time step, and nAt is the duration of tran-
sition from some previous adaptive gain value to the new 
initial condition F, where n can be selected appropriately to 
ensure F—F, to within a specified tolerance. 

4.2 Optimal Control Modification Adaptive Law with 
Adaptive Gain Normalization 

Fast adaptation can lead to loss of robustness in the stan-
dard model-reference adaptive control. Fast adaptation is 
usually associated with the use of a large adaptive gain. How-
ever, this is not the only effect of fast adaptation. When the 
amplitude of the basis function is large, the effect is equiva-
lent. Normalization is a technique that can be used to achieve 
more robust adaptation for large amplitude inputs. The objec-
tive of the normalization is to reduce the effect of large ampli-
tude of the input basis function. Normalized adaptation can 
achieve a significant increase in the time delay margin of 
adaptive control. 

Referring to FIG. 22 illustrating an adaptive control system 
175 comprising the same constituents as that in FIG. 1 and 
further including therein an adaptive gain normalization 
method 205 as taught by the present invention. 

The adaptive gain F in the optimal control modification 
adaptive law 120 and the various alternative embodiments 
thereof 150, 155, 160, and 170 is adjusted in a continuous 
time-varying manner by the adaptive gain normalization 
method 205 as follows: 

C 	 (138) 
C(t) = 

1+(DT(x)R$(x)  

Vc3 (C1C2C10  +  C4C11) ~1 	
C2(VC 1 C3C10  — C11)  

10 	
- 	

vc1C3C10 — Ci1 	 (C1C2C10 + C4C11)2  

K
— C1C10(VC3c4 + C2C11) ~ 1 + 	1+ Cz(VCtC3C10 — C21)  

	

VC1C3C10 — C1 	 (VC3C4 + C2C11 )2 

15 

where c l , c2, and c4  are defined previously, c3_C12X 	1 

(R)Xm=n(B TAm-T
QAm

-1B), C10 1 +c12Xm,n(R)Xma 1 (R), and 

20 

Ctt =C12~,»"(R) IIPBII. 

Using the same Lyapunov candidate function as in Eq. 
25 (21), then V(e,0) is evaluated as 

V (e, 0) <- — ci (Ilell - C2)2  + 	 (144) 

	

2 	VC3 (11011 —  C4)2  — 2c1111e1111011 	vc3 c2  
30 	 c1 c2 — 	 + 

C10 	 C10 

Then, V(e,0):50 implies 

35 

z 	z Ci1e12 	ZC4C11e+vc3c4 	(145) 
— Ct(Ilell — c2) +c1 c2+ 	+ 	 1- 0 

	

VC3C10 	 C10 

	

40 	or 

where F on the right hand side is a constant adaptive gain 
matrix and R=RT>OERm"m is a positive-definite normaliza- 	

vc3 	c4) + vc3 c4  + 2czc1111 011  
z 	2 	 2 	2 	(146) 

- (11011 —  
tion matrix such that 0<-R<Rm,, . 	 +C,C2  + 

c 11 011  
11   
CtC

2 <_ 010 

	

The optimal control modification adaptive law 120 with the 45 	
Cto 

 
adaptive gain normalization method 205 can be expressed 
alternatively as 	 For 0:5R<Rmax, then it can be shown that such that 

vc1C3C10-0112>0. It follows that V(e,0):50 outside the com-
pact set 

0=— (D (x)[eTP — V(DT(x)OBTPAm1]B 	
(13 

+ 	
9) 50 

1 (DT  (x) R~(x) 

(147) 

The maximum value of the normalization matrix R__  is 
determined by 

T 	 VA,,,;a(Q)A,,,;a(BTAmTQAm1B) 	
(140) 

(x)Rmax~ (x) C1z = 	
211PB112 	

x x 1 + 

411PB11 2  
vAmia (Q)Am;,  (BT  AmT  QAm 1  B) 

Using the standard Lyapunov stability theory, it can be 
shown that the optimal control modification adaptive law 120 
is stable and results in an uniformly ultimately bounded track-
ing with the following ultimate bound:  

55 	
ct (Ilell — C2) 2  + 

 VC3 (11011 — 
 C4)2  — 

 2c11 11e1111011  <  C1C2  + VC3C4 

C10 	 C10 

Therefore, the solution is uniformly ultimately bounded 
60 for any modification parameter 0<v<vmaz  and normalization 

matrix 0:5R<Rma  
4.3 Adaptive Flight Control Simulations 
To demonstrate the effectiveness of the covariance adap- 

tive gain adjustment method 175 and the adaptive gain nor- 
65 malization method 205 in conjunction with the optimal con- 

trol modification adaptive law 120 and the various alternative 
embodiments thereof 150, 155, 160, and 170, simulations of 

1+ 
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a damaged medium-range, twin-engine, single-aisle generic 
transport aircraft with a 28% loss 2301 of the left wing 2302, 
as shown in FIG. 23, are conducted. Due to the asymmetric 
damage, the motions in the roll, pitch, and yaw axes are 
completely coupled together. A level flight condition of Mach 
0.6 at 15,000 ft is selected. The remaining right aileron is the 
only roll control effector available. 

Referring to FIG. 2, the adaptive flight control architecture 
125 is designed for the adaptive flight controller 145 with the 
optimal control modification adaptive law 150 for a nominal 
PI feedback controller in conjunction with the covariance 
adaptive gain adjustment method 175 and the adaptive gain 
normalization method 205. The reference model 135 is speci-
fied by wP=2.0 rad/sec, w. — I.5 rad/sec, w, 1.0 rad/sec, and 

~P  ~q ~r 1/✓2. 
The pilot pitch rate command is simulated with a series of 

ramp input longitudinal stick command doublets, corre-
sponding to the reference pitch angle t3.81' from trim. The 
tracking performance of the baseline flight controller with no 
adaptation is compared against the standard model-reference 
adaptive control and the optimal control modification adap-
tive law 150 with the covariance adaptive gain adjustment 
method 175 and the adaptive gain normalization method 205. 
The adaptive gains are selected as large as possible within the 
numerical stability limit of the adaptive laws. This results in 
E=150 for the standard model-reference adaptive control and 
E=3000 for the optimal control modification adaptive law 
150. The design parameters are chosen to be v -0.2 and 
r1 -0.0125 since X_ i„(B TA_-TQAm- 'B)-0.0625. The maxi-
mum value of v is computed to be v= m,,-0.75 for fl -0 and 
vm_-0.375 for r1 -0.0125. Thus, the choice of v-0.2 is 
acceptable. For the adaptive gain normalization, R is chosen 
to be 100. 

The aircraft roll, pitch, and yaw rate responses are shown in 
FIGS. 24, 25, and 26. The baseline flight controller is not able 
to maintain the aircraft in trim in roll and yaw. Both the roll 
and yaw rates are significant as compared to the responses due 
to the adaptive flight controllers. All three adaptive control-
lers perform well to maintain the roll and yaw rates close to 
zero. The pitch rate tracking is quite good with all the three 
adaptive flight controllers. The standard model-reference 
adaptive control shows higher roll and yaw rate responses 
than the optimal control modification adaptive law 150 with 
the covariance adaptive gain adjustment method 175 and the 
adaptive gain normalization method 205. In all cases, the 
behaviors of the covariance adaptive gain adjustment method 
175 and the adaptive gain normalization method 205 are very 
similar. 

The pitch angle and bank angle responses are shown in 
FIGS. 27 and 28. The baseline flight controller does not track 
the pitch angle reference model very well. All the adaptive 
controllers show good tracking of the pitch angle. The bank 
angle response with the baseline flight controller is quite 
excessive due to the left wing damage. The optimal control 
modification adaptive law 150 with the covariance adaptive 
gain adjustment method 175 and the adaptive gain normal-
ization method 205 reduce the bank angle responses better 
than the standard model-reference adaptive control. 

The control surface deflections are shown in FIGS. 29, 30, 
and 31. In all cases, there is no unusual behavior in the control 
surface deflections. All surface deflections are within the 
position limits of the aileron, elevator, and rudder; although 
the optimal control modification adaptive law 150 with the 
covariance adaptive gain adjustment method 175 and the 
adaptive gain normalization method 205 produce larger aile-
ron surface deflections as expected to reduce the roll rate. 

32 
Table 1 shows the time delay margin estimates of all the 

adaptive flight controllers for a constant adaptive gain E=150. 
The optimal control modification adaptive law 150 with the 
adaptive gain normalization method 205 achieves the greatest 

5  time delay margin among all the adaptive flight controllers. 
The standard model-reference adaptive control has the small-
est time delay margin, as expected. In terms of tracking per-
formance, both the covariance adaptive gain adjustment 
method 175 and the adaptive gain normalization method 205 

to have very similar behaviors. Yet, the adaptive gain normal-
ization method 205 achieves almost twice the time delay 
margin of the covariance adaptive gain adjustment method 
175. 

15 
TABLE 1 

Time Delay Margin Estimates for F = 150 

Time Delay 

20 	Adaptive Flight Control 	 Margin, sec 

Model-Reference Adaptive Control 	 0.19 
Optimal Control Modification 	 0.29 
Optimal Control Modification with Covariance 	 0.33 
Adjustment 
Optimal Control Modification with Normalization 	0.59 

25 

Implementation of Simplified Optimal Control Modifica-
tion Adaptive Law On-Board NASA F/A-18 Aircraft 

Flight tests of several versions of model-reference adaptive 
30 control were carried out on the NASA Full-scale Advanced 

Systems Testbed (FAST), which is an F/A-18 (McDonnell 
Douglas, now The Boeing Company, Chicago, Ill.) high-
performance military j et aircraft, as shown in the photograph 
of FIG. 32. This aircraft has a research flight control system 

35 that allows for testing of experimental control laws. 
In 2009, a request for information (RFI) was released by 

NASA Integrated Resilient Aircraft Control (IRAQ Project 
seeking ideas for adaptive control experiments for loss-of-
control events. One of the focus areas identified from the 

4o responses that NASA received was to investigate simple yet 
effective adaptive control algorithms to help address the issue 
of verification and validation (V&V) testing of adaptive flight 
controls. Adaptive flight controllers, such as the standard 
model-reference adaptive control, face many difficulties with 

45 regards to being able to be certified and implemented on 
civilian or military aircraft. There are large gaps in the certi-
fication process for dealing with adaptive controllers. To date, 
the Federal Aviation Administration (FAA) has not certified 
any adaptive flight controllers for commercial aircraft. Part of 

50 the process to certification is V&V testing. Adaptive control-
lers can become complex with many adaptive parameters and 
complex update laws as well as nonlinearity. The required 
testing to prove that the controller will behave appropriately 
and predictably under all situations, while also providing 

55 beneficial results in the presence of failures, can require 
extensive testing. By simplifying the controllers, the required 
testing could potentially be greatly reduced. Simplification is 
often at the expense of performance and the controller's abil-
ity to handle more complex failure conditions. So there exists 

6o a trade-off between complexity and performance of a control-
ler. 

FIG. 33 shows the nonlinear dynamic inversion adaptive 
flight controller 210 implemented on the NASA FAST air- 
craft. The nonlinear dynamic inversion controller 210 further 

65 comprises a control vector 215, a nonlinear dynamic inver- 
sion controller 220, angular acceleration command 225, on- 
board aerodynamic lookup tables 230, a nonlinear dynamic 



US 9,296,474 B1 
33 	 34 

	

inversion reference model 235, an adaptive control reference 	The pilot commands 270 rp (t) and rq(t) are computed from 

	

model 240, an error compensator 245, an adaptive augmen- 	the pilot stick inputs 6,,,(t) and 6,,,(t) according to 
tation controller 250 employing three adaptive laws 255, 260, 
and 265, a pilot command 270, and a plant 275 which is the 
NASA FAST aircraft. 	 5 Y 	 (153) 

r 	~ 	~~kp cop ~tar 

	

The control vector 215 has ten control surface commands, 	
a 

	

denoted as 6, and is computed by the nonlinear dynamic 	 Yg 	
kgwg[6,o„+c~~~mn dr1  inversion controller 220 as 	 ° 

6=B,- '[Y_,+ Q xIQ f,(y)]+6 o 	 (148) 10 	The error compensator 245 is necessary to improve track- 

	

where the vector of estimated aerodynamic moments fA(y) 	ing of the reference model in the presence of model uncer- 

	

is calculated from the on-board aerodynamic lookup tables 	tainty and disturbances by the nonlinear dynamic inversion 

	

230, while the angular rates Q are measured using aircraft 	controller 220 without adaptive augmentation. The nonlinear 

sensors, I is the inertia matrix of the aircraft, 6,, are pre- 15 dynamic inversion controller 220 in the pitch axis contains a 

	

determined trim surface commands appropriate for the test 	proportional-integral (PI) error compensator. The nonlinear 

	

flight condition, and B,- ' is a weighted pseudo-inverse of the 	dynamic inversion controller 220 in the roll axis contains a 

	

control effectiveness derivatives with respect to the surface 	proportional error compensator. The gains of the error com- 

positions weighted by a control allocation matrix. 	 pensator 245 are tuned to match the adaptive control refer- 

The weighted pseudo-inverse B, - ' is computed as follows: 20 ence model 240. Thus 

B,- ' -  ff-'B, T(B,ff-'B, T) - ' 	 (149) 

P~ 	
cop(P.f - P) 	 (154) 

	

The angular acceleration commands Xc_ jt) contain the 	
g = 2Sa ~a(i r g) + 

~~ (
(g r g) 

~~ 

	

sum of the desired reference dynamics X,, t(t) produced by the 25 	 J0 
nonlinear dynamic inversion reference model 235, the output 
Xc jt) of the error compensator 245, and adaptive control aug- 

	

mentation Yc jt) computed by the adaptive augmentation con- 	The aircraft's true, unknown dynamics are written as 

troller 250. This is described as 

	

30 	
z=Ax +Bm (u-a) 	 (155) 

or 

P,f  + P, + P p 	 (150) 

g,f+g,+g, 	

_(0)

p +Bp) 	1 	 0 	 (156) 
Y,f+r 	

P 

	

35 	9 - 	0 	0 	 1 

R 	0-( p +egt ) - (2Spo)p +9gz ) 

Note that the adaptive controller only augments the pitch 
and roll axes. 	 P 	1 0 

	

The nonlinear dynamic inversion reference model 235 for 40 	 ~ g dT + 0 0 

	

the adaptive control reference model 240 each are by the pilot 	 ° 	0 1 
ug 

 -  O
-g 

	

command 270 r(t). The nonlinear dynamic inversion refer- 	 g 

ence model 235 generally represents the same desired 

	

dynamics as the adaptive control reference model 240, but 	where 6P, 0,,, and 6 q2  the uncertain parameters; and 6P (t) 
may be modified to simulate a failed or damaged aircraft. The 45 and 6q(t) are scalar, time-varying uncertain disturbances. 

	

state feedback vector y(t) contains measurements of the 	The nonlinear dynamic inversion adaptive flight controller 

	

inputs required for the aerodynamic lookup tables 230, such 	210 is then designed to cancel out the effects of the uncertain 

	

as angle of attack and velocity, as well as the angular rates. 	parameters 6P,  0q , 1  6q2
, 6P (t), and 6q(t) by the adaptive aug- 

	

The adaptive control reference model 240 for the aircraft 	mentation controller 250. This is expressed as 
axis of interest is specified as a stable, linear time-invariant 50 
system as 

up 	rp  + Pp 	 (157) 

zm =Amxm +Bmr 	 (151) 	 ug  - Y p  + qp  

or 
	

55 

where 

Pm 	-cop  1 	0 	Pm 	
1 0 

(~ 

	do 

	
lII Yp

im = 	0 	0 	1 	J  im(T)d1T 	O

J
Y

~ yy  	L 9 
gm 	0 

 _(,)2
g -20 	W9 	

0 1 

Qm 

(152) 

B,P + &p 	
(158) 

60 	 Pa _ 	(~ 

9gi  J
gdr+9gzg+&g 

0 

The pitch axis reference model is second order, represent- 	5.1 Simple Model-Reference Adaptive Control 
ing the desired short-period dynamics. The roll axis reference 65 	In one embodiment, the adaptive augmentation controller 
model is first order, and no adaptive augmentation is applied 	250 employs a simple model-reference adaptive control 255, 
in the yaw axis. 	 designated as sMRAC adaptive lazes. The sMRAC adaptive 



US 9,296,474 B1 
35 

laws 255 are used to estimate the uncertain parameters 0 1, 01, 
and 0., according to 

6P ra,pPP,BmP 	 (159) 

0g F.,xsR,'PgB_, 	 (160) 
Where  6,_ [6  q  6 g2] r, p=p--p, xq [Utgdti q]T and XP=Uot  

(qm —q)& qm —q] f. 
5.2 Optimal Control Modification with Normalization 

Model-Reference Adaptive Control 
In a preferred embodiment, the adaptive augmentation 

controller 250 employs the optimal control modification 
adaptive law 120 or any of the various alternative embodi-
ments thereof 150,155, 160, and 170 in conjunction with the 
adaptive gain normalization method 205 , collectively 
referred to as onMRAC adaptive laws 260. The onMRAC 
adaptive laws 260 is described by 

0, 	
dap  21pppaBmp+v,,P2B,BmpPpAmpBmp) 	

(161) 

1 + Naq  p 

8q  = 	
7,e9 	

(X j pq  Bmq  + Vqq  xq 
xq B9Bmq 

pq 
 Am' 

Bm9) 	
(162) 

1+xq  N,g xp  

5.3 Optimal Control Modification with Normalization 
Model-Reference Adaptive Control Plus Disturbance Rejec-
tion 

In another preferred embodiment, the adaptive augmenta-
tion controller 250 employs the onMRAC adaptive laws 260 
plus adaptive laws to cancel outthe effects ofthe disturbances 
u, collectively referred to as onMRAC+adaptive laws 265. 
The onMRAC+adaptive laws 265 include the following adap-
tive laws in addition to the onMRAC adaptive laws 260: 

C, 	/ 	 (163) 
0, 
 1 +Nip p2 (PP Bmp  +VQp 

Bp Bmp p
p  A

-1  B
mp/  

CI 	/ 	 (164) 
~
q 1+xTN~ x lxapaBmg+v~q 5 gBmgPqAmgBmq

~ 
9 p p 

5.4 Flight Test Results 
Two pilots evaluated the reduced pitch damping failure 

during a 2-g air-to -air tracking task. Handling qualities rat-
ings given by Pilot A and Pilot B for each of the four control-
lers during the 2-g air-to-air tracking task with a reduced pitch 
damping failure are tabulated in FIG. 34. Due to the high 
workload required to maintain pitch control in gross acquisi-
tion, Pilot B was unable to maintain sufficient airspeed to 
complete the fine tracking portion of the task with the non-
linear dynamic inversion controller 210, and consequently no 
rating was given for that case. An overall assessment of the 
ratings indicate that all three of the adaptive controllers 
improved the handling qualities of the aircraft during the 
gross acquisition portion of the task, but that the varying 
levels of controller complexity had minimal effect on the 
ratings. Little to no improvement was observed in the ratings 
for the fine tracking portion of the task even when compared 
against the nonlinear dynamic inversion controller 210 con-
troller without adaptation. 

Two pilots evaluated the reduced roll damping failure dur-
ing an in-trail formation tracking task. The ratings of Pilot A 
and Pilot B for gross acquisition and fine tracking with the 
simulated roll damping failure are tabulated in FIG. 35. Both 
pilots rated the nonlinear dynamic inversion controller 210 

36 
controller with no failures (not shown) as Level I for this task, 
with Pilot A giving it Cooper-Harper ratings of 2 and 3, and 
Pilot B giving it ratings of 3 and 2 for gross acquisition and 
fine tracking, respectively. Clearly, the failure degraded the 

5 gross acquisition handling qualities more than those of the 
fine tracking portion of the task. All of the adaptive controllers 
improved the gross acquisition ratings, but the fine tracking 
results were less conclusive . Generally speaking, the onM-
RAC+controller performs as well or better than any of the 

10 other controllers, completely restoring the Level I fine track-
ing handling qualities of the nonlinear dynamic inversion 
controller 210 with no failures. 

It was found that normalization suppresses adaptation dur-
ing large dynamic maneuvers through attenuation of the 

15 learning rate by the inverse of the weighted square of the 
feedback parameters . Squaring the input vector ensures that it 
is always positive , and weighting allows the designer to con-
trol the relative influence of each feedback term on the nor-
malizing behavior. In the pitch axis onMRAC update law, the 

20 relative influence of the fotq(ct)dti term was kept very low. 
The normalization terms are also biased by a constant of one 
to prevent a divide-by-zero when the feedback vectors are 
zero. Inclusion of OCM and normalization allowed the adap-
tive gain to be increased from I to 50, enabling faster adap- 

25 tation. 
It is noted that the optimal control modification term is 

present in the update law for 6P (t), but not for 6g(t). In the 
initial design, it was not clear whether the optimal control 
modification term was necessary in the calculation of the 

30 disturbance adaptive parameters. In the interest of keeping the 
adaptive augmentation controller 250 as simple as possible, 
the optimal control modification term was not included in 
either. During the first research flight, a persistent I Hz, 0.5 
deg/s oscillation was present in roll rate and was also 

35 observed in the value of ap(t. Implementation of the optimal 
control modification term in the 6P (t) law eliminated the 
oscillation on all of the remaining flights. Because a similar 
oscillation was not observed in 6g(t), no optimal control 
modification term was added for that parameter. During han- 

40 dling qualities maneuvers at the end of the flight phase of the 
experiment, interactions between the pilot and the adaptive 
augmentation controller 250 in the pitch axis with the onM-
RAC+adaptive laws 265 were observed that likely adversely 
affected the pilot's rating of the system. Subsequent simula- 

45 tion studies indicated that the addition of the optimal control 
modification term to the 6g(t) adaptive law would eliminate 
these interactions. 

NON-LIMITING EXAMPLES 
50 

As will be appreciated by one skilled in the art, aspects of 
the present invention may be embodied as a system, method, 
or computer program product . Accordingly, aspects of the 
present invention may take the form of an entirely hardware 

55 embodiment , an entirely software embodiment (including 
firmware, resident software , micro-code, etc .) or an embodi-
ment combining software and hardware aspects that may all 
generally be referred to herein as a "circuit", "module", or 
"system." Furthermore, aspects of the present invention may 

60 take the form of a computer program product embodied in one 
or more computer readable medium(s) having computer read-
able program code embodied thereon. 

Any combination of one or more computer readable medi- 
um(s) may be utilized. The computer readable medium may 

65 be a computer readable signal medium or a computer read- 
able storage medium. A computer readable storage medium 
may be, for example, but not limited to, an electronic, mag- 
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38 
netic, optical, electromagnetic, infrared, or semiconductor 	ticular manner, such that the instructions stored in the com- 
system, apparatus, or device, or any suitable combination of 

	
puter readable medium produce an article of manufacture 

the foregoing. More specific examples (a non-exhaustive list) 
	

including instructions which implement the function/act 
of the computer readable storage medium would include the 	specified in the flowchart and/or block diagram block or 
following: an electrical connection having one or more wires, 5 blocks. 
a portable computer diskette, a hard disk, a random access 

	
The computer program instructions may also be loaded 

memory (RAM), a read-only memory (ROM), an erasable 	onto a computer, other programmable data processing appa- 
programmable read-only memory (EPROM or Flash 

	
ratus, or other devices to cause a series of operational steps to 

memory), an optical fiber, a portable compact disc read-only 
	

be performed on the computer, other programmable appara- 
memory (CD-ROM), an optical storage device, a magnetic io tus or other devices to produce a computer implemented 
storage device, or any suitable combination of the foregoing. 	process such that the instructions which execute on the com- 
In the context of this document, a computer readable storage 	puter or other programmable apparatus provide processes for 
medium may be any tangible medium that can contain, or 

	
implementing the functions/acts specified in the flowchart 

store a program for use by or in connection with an instruction 	and/or block diagram block or blocks. 
execution system, apparatus, or device. 	 15 	The terminology used herein is for the purpose of describ- 

A computer readable storage product or computer readable 
	

ing particular embodiments only and is not intended to be 
signal medium may include a propagated data signal with 

	
limiting of the invention. As used herein, the singular forms 

computer readable program code embodied therein, for 
	

"a", "an" and "the" are intended to include the plural forms as 
example, in baseband or as part of a carrier wave. Such a 	well, unless the context clearly indicates otherwise. It will be 
propagated signal may take any of a variety of forms, includ-  20 further understood that the terms "comprises" and/or "com- 
ing, but not limited to, electro-magnetic, optical, or any suit- 	pri sing," when used in this specification, specify the presence 
able combination thereof. A computer readable signal 

	
of stated features, integers, steps, operations, elements, and/ 

medium may be any computer readable medium that is not a 	or components, but do not preclude the presence or addition 
computer readable storage medium and that can communi- 	of one or more other features, integers, steps, operations, 
cate, propagate, or transport a program for use by or in con-  25 elements, components, and/or groups thereof. 
nection with an instruction execution system, apparatus, or 

	
The description of the present invention has been presented 

device. 	 for purposes of illustration and description, but is not 
Program code embodied on a computer readable medium 

	
intended to be exhaustive or limited to the invention in the 

may be transmitted using any appropriate medium, including 
	

form disclosed. Many modifications and variations will be 
but not limited to wireless, wireline, optical fiber cable, RF, so apparent to those of ordinary skill in the art without departing 
etc., or any suitable combination of the foregoing. 	 from the scope and spirit of the invention. The embodiment 

Computer program code for carrying out operations for 	was chosen and described in order to best explain the prin- 
aspects of the present invention may be written in any com- 	ciples of the invention and the practical application, and to 
bination of one or more programming languages, including 	enable others of ordinary skill in the art to understand the 
an object oriented programming language such as Java, 35 invention for various embodiments with various modifica-
Smalltalk, C++ or the like and conventional procedural pro- 	tions as are suited to the particular use contemplated. 
gramming languages, such as the "C" programming language 
or similar programming languages. The program code may 

	
What is claimed is: 

execute entirely on the user's computer, partly on the user's 
	

1. A computer-implemented method for adaptive control of 
computer, as a stand-alone software package, partly on the 4o a physicals system, the method comprising: 
user's computer and partly on a remote computer or entirely 	modeling a physical system using a nonlinear plant as 
on the remote computer or server. In the latter scenario, the 

	
X=Ax+B[u+f(x)], wherex(t): [0,-)—R" is a state vector, 

remote computer may be connected to the user's computer 	u(t): 0,-)—RP is a control vector, AER""" and BER"" P 

through any type of network, including a local area network 
	

are known such that the pair (A,B) is controllable, and 
(LAN) or a wide area network (WAN), or the connection may 45 	f(x):R"—RP is a matched uncertainty; 
be made to an external computer (for example, through the 	modeling at least one of an unstructured uncertainty and a 
Internet using an Internet Service Provider). 	 structured uncertainty, wherein 

Aspects of the present invention have been discussed above 	the unstructured uncertainty f(x) is modeled as 
with reference to flowchart illustrations and/or block dia- 	f(x)=E,_i"O*,4){x)+e(x)=0* T(D(x)+e(x), 	where 
grams of methods, apparatus (systems), and computer pro-  50 	O*ER-  Pisanunknownconstantidealweightmatrix 
gram products according to various embodiments of the 	that represents a parametric uncertainty, (D(x): 
invention. It will be understood that each block of the flow- 	R"—R'" is a vector of chosen basis functions that are 
chart illustrations and/or block diagrams, and combinations 	continuous and differentiable in C i , and 
of blocks in the flowchart illustrations and/or block diagrams, 	e(x):R"—RP is an approximation error which can be 
can be implemented by computer program instructions. 55 	made small on a compact domain x(t)ED - R" by a 
These computer program instructions may be provided to a 	suitable selection of basis functions, and 
processor of a general purpose computer, special purpose 	the structured uncertainty f(x) is modeled as f(x)=0 * T(D 
computer, or other programmable data processing apparatus 

	
(x), where (D(x):R"—R'" is a vector of known basis 

to produce a machine, such that the instructions, which 
	

functions that are continuous and differentiable in C i ; 
execute via the processor of the computer or other program-  60 using a feedback controller specified by a=—K xx+K r—u ad, 

mable data processing apparatus, create means for imple- 	where r(t):0,-)—RPEL_ is a command vector, K xERP"" 
menting the functions/acts specified in the flowchart and/or 

	
is a stable gain matrix such that A—BK, is Horwitz, 

block diagram block or blocks. 	 K,.ERP"P is a gain matrix for r(t), and a "d(t)ERP is a 
These computer program instructions may also be stored in 

	
direct adaptive signal which estimates the parametric 

a computer readable medium or computer readable storage 65 	uncertainty in the plant such that uad OT(D(x), where 
medium that can direct a computer, other programmable data 

	
O(t)ER"P is an estimate of the parametric uncertainty 

processing apparatus, or other devices to function in a par- 	O*; 
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using a reference model specified as X m=Amxm +Bmr, where 
AmER""" and B mER" P are given by Am=A-BKx  and 
Bm=BK,.; 

modeling an estimation error of a parametric uncertainty 
by 0=0-0 * in a tracking error equation e=A me+B [O T(D 5 
(x)-e(x)], where e(t)=x m (t)-x(t) is the tracking error; 

estimating a parametric uncertainty by an optimal control 
modification adaptive law specified by at least one of 
6=-F(D(x)[eTP-v(D T(x)OB TPAm-1]B, where v>OER is 

a modification parameter, F-FT>OER-'—  is an adap- io 
tive gain matrix, and P=P T>OER""" solves PAm + 
Am TP=-Q, where Q=Q T>OER""" is a positive-defi- 
nite weighting matrix, and 

O=-F(D(x)[eTPB+v(D T(x)OR], where R=RT>OERP P is 
a positive-definite weighting matrix. 	 15 

2. A computer-implemented method for adaptive control of 
an aircraft, the method comprising: 

modeling an aircraft using a nonlinear plant as x=A 11x+ 
Al2z+B,U+fl (x,z) and 2=A21 x+A22z+B2u+f2(x,z), 
where Ali  and B , , i=1,2, j=1,2 are nominal aircraft matri- 20 
ces which are assumed to be known, x=[p q r] T  is a state 
vector of roll, pitch, and yaw rates, z=[A(D Aa AR AV Ah 
AO] T  is a state vector of aircraft attitude angles, airspeed, 
and altitude, and a=[Aria  Ab e  A6,.] T  is a control vector of 
aileron, elevator, and rudder deflections, and f (X,z), 25 
i=1,2 is an uncertainty; 

modeling at least one of an unstructured uncertainty and a 
structured uncertainty, wherein 
the unstructured uncertainty f.(x,z) is modeled as 

f.(x,z)=0*, T4)(x,z,u(x,z))+e(x,z), where O*, is an 30 
unknown, constant ideal weight matrix that repre-
sents a parametric uncertainty, (D(x,z,u(x,z)) is a vec- 
tor of chosen basis functions that are continuous and 
differentiable in C l , and e(x,z) is an approximation 
error which can be made small by a suitable selection 35 
of basis functions, and 

the structured uncertainty f.(x,z) is modeled as 
f.(x,z)=0*, T4)(x,z,u(x,z)), where (D(x,z,u(x,z)) is a 
vector of known basis functions that are continuous 
and differentiable in C l ; 	 40 

modeling a second-order reference model that specifies 
desired handling qualities with good damping and natu-
ral frequency characteristics in the roll axis by at least 
one of(S 2 +2~rwP S +wP2)~ =gp6,,,and(s+wP)pm=gP6, , 
in the pitch axis by (S 2+2~gwgS+wg2)0 m=ggSio", and in 45 
the yaw axis by (S2 +2~,,w,,s+w,,2)(3 m=g,.6,.ud, where (D m , 
O m, and P. are the reference bank, pitch, and sideslip 
angles, Cop , wq, and w,, are the natural frequencies for 
desired handling qualities in the roll, pitch, and yaw 
axes, ~P , ~q, and ~,, are the desired damping ratios, 6,, t, 50 
6io", and 6,,"d are the lateral stick input, longitudinal stick 
input, and rudder pedal input, and gP , gq, and g,, are the 
input gains; 

representing the reference model in a state-space form as 
xm=-KPxm-Kfo lxmd2+Gr, where xm=[pm qm  rm]T[~ 55 
6m2  ( m] g, K -diag(2~ cop,2~^,2~ ), K,-liag(w2 , 

wq  ,wr )=SZ , G-liag(gplgglgr), and r=[6,,t bio" 6,."A  
using a proportional-integral (PI) dynamic inversion feed-

back controller with adaptive augmentation control to 
improve aircraft rate response characteristics specified 60 
by at least one of 
u=B

1 -1 (Xm-Arrx-Al2z+ue-uad), where ue  KP (xm-x)+ 
Kfot(xm -x)dti is a nominal PI error compensator, and 
uad O 1 T(D(x,z,u) is an adaptive augmentation con-
troller, and 65 

40 
modeling a tracking error as e=Uo l (xm -x)dti xm -x] T  in a 

tracking error equation  
where 

o 	i  
Am - ~ 	

o 
-K; -K P 

I andB= ~ 0 ~ ; 

estimating the parametric uncertainty O * 1  by an optimal 
control modification adaptive law for a nominal PI feed-
back controller specified by at least one of 

Oi -F[(D(x,z)e TP-v(D(x,z)(D T(x,z)O,B TPAm ']B, 

Oi -F[(D(x,z)e TPB+"(x,z)(D 7(x,z)O,Ks  2], 

where c>OER is a weighting constant, and 

Oi -F[(D(x,z)e 7PB+"(x,z)(D 7(x,z)O,Q -4]. 

3. The computer-implemented method of claim 2, further 
comprising: 

using a proportional-integral-derivative (PID) dynamic 
inversion feedback controller with u e  KP (xm-x)+Kfot  
(xm -x)dti+Kd(Xm -X), where Kd-liag(kd ,kd ,kd ); 

modeling a tracking error as e=[fo l (xm -x)& Xm -x] T  in a 
tracking error equation e=A me+B[O 1 T~ (x,z)-f1 (x,z)], 
where 

u 	 i 	 u 
Am = 	 and B - 

-(l + Kd)-i  K; - (l + Kd)
-i 

 KP 	 (l + Kd )
-i  

estimating the parametric uncertainty O * 1  by an optimal 
control modification adaptive law for a nominal PID 
feedback controller specified by at least one of 

Ot = - F[(D(x, Z)eT  P - v(D(x, Z)(DT  (x, Z)O,BT  PAm1 IB, 

01 = - F[(D(x, Z)eT  py + Kd)- 'B + cv(D(x, Z)(DT  (x, Z)Oi K;  2], where 

K
-t 

MI + Kd)-i  B = c 	 and 
Kp i [I+(l+Kd )K;  i ] 

Ot = - F [(D(x, Z)eT  py + Kd )-i  B + cv(D(x, Z)(DT  (x, Z)Ol n-4]. 

4. The computer-implemented method of claim 2, further 
comprising: 

modeling a first-order reference model in a state-space 
form x_=-KPxm +Gr 

using a proportional dynamic inversion feedback control-
ler with ue  KP (xm -x); 

modeling a tracking error as x,=x m -x in a tracking error 
equation 

z,--K  Fx,+Oj T(D(x, z) fj(x,z); 

estimating the parametric uncertainty O * 1  by an optimal 
control modification adaptive law for a nominal propor-
tional feedback controller specified by at least one of 

Oi -F[(D(x,z)x,'P+v(D(x,z)(D T(x,z)O,PKP  i], 

and 

u=B, T(B,B, T) i (xm  A iix-A l2z+ue  u,d); 	 6 1 =-cF[(D(x,z)x,TKP i +v(D(x,z)(D T(x,z)O,KP 2]. 
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5. The computer-implemented methods of claim 1 , farther 
comprising: 

accessing an adaptive gain matrix F allowed to be time-
varying; 

calculating, with a processor, optimal control modification 
adaptive laws with time-varying adaptive gain F(t); 

using a covariance adaptive gain adjustment method 
described by at least one of 

I --r1I)(x)41) T(x)F, where 0:5rl<vX_JB TA_-T  
QA_-1 B)ER is an adjustment parameter which 
depends on the modification parameter v, and 
0 :5v<vm_ where v m_ has no limit if the basis function 
(D(x) is bounded such that J(D(x)11<4) 0  or 

V.- = 

Ami,(Q)Ami,(B T  AmT  QAm1B)  ~1 + 1 — 	
41111BT PAm1  B11

1
0o 

211BT PAm 1 B11 202 	 Ami,(Q)A a(BT AmT QAm1 B) 

if the basis function (D(x) belongs to a class of functions such 
that J4)(x)JJ:5JJxJJ  or 

42 

C with F(ti ) = [ ; t ? ti when threshold is exceeded at t = t;  

C with C(0) = F O 	 otherwise 

where F, is a properly chosen new initial condition for the 
covariance adaptive gain adjustment method for t2A, when a 
new uncertainty becomes present , and F, is phased in by a 
first-order filter I=- ~ (I -I ~) or any order filter so chosen for 

to tE[t,,t,+nAt], where X>O, F-F(t) as t=t,-At computed from 
the previous time step and nAt is the duration of transition 
from some previous adaptive gain value to the new initial 
condition F, where n can be selected appropriately to ensure 

15  F—F, to within a specified tolerance. 
6. The computer-implemented methods of claim 2, further 

comprising: 
accessing an adaptive gain matrix F allowed to be time-

varying; 
20 	calculating, with a processor, optimal control modification 

adaptive laws with a time-varying adaptive gain F(t); 
using a covariance adaptive gain adjustment method 

described by at least one of 
I --ilF(D(x)(D T(x)F, 	where 	O<5il<vX_JBTA_-T 

25 QAm-1 B)ER is an adjustment parameter which 
depends on the modification parameter v, and 
0 :5v<vm._ where v m_ has no limit if the basis function 
(D(x) is bounded such that J(D(x)JJ<(i 0  or 

2Ami,(BTAmTQAm1B)IIPBII2 	gA ;n(Q)IIBTPAm 1 B11 2 	30 Vm 	
—

1+ 	1— 
Ami,(Q)IIBTPAm 1 B11 2 	 „n(BT AmT QAm1 B)IIPBIh Vm_ _ 

if the uncertainty O* T(D(x) is non-destabilizing and the feed- 

;n(QA;n(BTAmTQ1m1B) ~ 1+ 	
4711BTPAm1BIhD0  

1-  
211BTPAm1 B 1 202 	 Ami,(Q) ~ ;n(BT Am T QQAm 1 B) 

back control system without adaptation is robustly stable, 	35 

I'=-gF(D (x)(D T(x)F, where rl>OER-"m is an adjustment if the basis function (D(x) belongs to a class of functions such 
matrix whose elements are the adjustment parameters that J4)(x)JJ:5JJxJJ  or 
for each individual element of the adaptive gain matrix 
such that 0:5X_,,(rl)<vX_ i„(B TA_-TQAm-1 B)ER is the 40  
stability condition, 

2Ami,(BTAmTQAm1B)IIPBIh 	 1Am;n(Q)IIBTPAm1B112  Vm_- 1+ 	1-  
Ami,(Q)IIBTPAm 1 BI1 2 	 ;n(BTAmTQ~m1 B)IIPBIh 

C = 
11F~ (x)~T  (x)F 
1 + (DT (x)R(D(x)' 	 45 

if the uncertainty O* T(D(x) is non-destabilizing and the feed- 
back control system without adaptation is robustly stable, 

where R=RT>O is a positive -definite normalization matrix, I'=-gF(D (x)(DT(x)F, where rl>OER-"m is an adjustment 

I -PF-'gF (D(x)(D T(x)F, where P-P T>O is the forgetting matrix whose elements are the adjustment parameters 

factor matrix, 	 50 for each individual element of the adaptive gain matrix 
such that 0:5X m_(rl)<vX_ i„(B TA_-TQAm-1 B)ER is the 
stability condition, 

L8 	—17C(D(x)(DT  (x)C] 	if [ ;~ < Fij  (to) 
rV - 

0 	 otherwise 	 55 gF(D(x)(DT (x)C 
r 	

1 + (DT (x)R(D(x)' 

	

f 	
gF(D(x)(DT(x)C' 

	

C  = 	- 	 a11d 1 +(DT(x)a(D(x)' 
where R=RT>O is a positive-definite normalization matrix, 

qF(D(x)(DT(x)F  I -PF-ilF(D(x)(D T(x)F, where P -P T>O is the forgetting 
if  1 + ~ (x)a~ (x) .. C.. _ I factor matrix, 

0 	 otherwise 

[l31  —17C~ (x)~T (x)C] ;~ 	if C;~ ~ G~ (to) 
using any of the aforementioned covariance adaptive gain 65 C" _ 	0 	 otherwise 

adjustment methods with a resetting mechanism 
described by 
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-continued 
r/C(D(x)(DT  (x)C'  

C 
—  F  1 +(DT(x)R(D(x)' and 

 

3C — 
gF(D(x)(DT(x)F 

~ ; 
C..= 	

/ 	T 
	

if  C;~ 	G~ (to) 1+~ (x)R~(x) 

0 	 otherwise 

using any of the aforementioned covariance adaptive gain 
adjustment methods with a resetting mechanism 
described by 

C with F(ti ) = [ ; t ? r, when threshold is exceeded at t = r, 
C- 

C with C(o) = [ o 	 otherwise 

44 

C — — r/C(D(x)(DT  (x)C  

1 + (DT (x)R(D(x)' 

where R=RT>O is a positive -definite normalization matrix, 

I -PF-'gF(D(x)(D T(x)F, where P -P T>O is the forgetting 
factor matrix, 

to 

[8C- qC(D(x)(DT (x)C] ij  if C;~ <-Gij(to) 
C~~ _ 

0 	 otherwise 

15 

~7F(D(x)
(DT  (x)F  

r— 
_ 	_ 
/f 1+  (DT  (x)R(D(x)' 

and 

where F, is a properly chosen new initial condition for the 	 gF(D(x)
(D

T  (x)F  
20 	 /3[ — 	 if [;i <_C;i (to) 

covariance adaptive gain adjustment method for t2A, when a 	C;;  = 	1 + ~T (x)R(D(x) iJ  
new uncertainty becomes present, and F, is phased in by a 	 o 	otherwise 
first-order filter F--X(F-F,) or any order filter so chosen for 
tE[t,,t,+nAt], where X>O, F -F(t) as t=t,-At computed from 
the previous time step and nAt is the duration of transition 25  using any of the aforementioned covariance adaptive gain 
from some previous adaptive gain value to the new initial 	adjustment methods with a resetting mechanism 
condition F, where n can be selected appropriately to ensure 	described by 
F—F, to within a specified tolerance. 

7. The computer-implemented methods of claim 3, further 
comprising: 	 30 	C with F(ti ) = [ ; t ? ti when threshold is exceeded at t = t;  

accessing an adaptive gain matrix F allowed to be time- 	_ 
C with C(o) _ FO 	 otherwise 

varying; 

calculating, with a processor, optimal control modification 
adaptive laws with time-varying adaptive gain F(t); 

using a covariance adaptive gain adjustment method 35 
described by at least one of 

I'=-gF(D(x)(D T(x)F, where 0:5rl<vX_,,(B TA_
-T  

QA_- 'B)ER is an adjustment parameter which 
depends on the modification parameter v, and 40 
0:5v<vm_ where v m_ has no limit if the basis function 
(D(x) is bounded such that J(D(x)11<4) o  or 

8. The computer-implemented methods of claim 4, further 
45 comprising: 

4gIIBTPAm'Bllzoo 	
accessing an adaptive gain matrix F allowed to be time- 

1  — 	 in 

	

Ami, (Q)~ ;n (BT A mTQ A mi B) 	 v 	g~ 

calculating, with a processor, optimal control modification 

	

50 	adaptive laws with time-varying adaptive gain F(t); 

using a covariance adaptive gain adjustment method 
described by at least one of 

I --r1I)(x)41) T(x)F, 	where 	O<5il<vX_JB TA_
-T  

55 QA_- 'B)ER is an adjustment parameter which 
depends on the modification parameter v, and 
0 :5v<vm_ where vm_ has no limit if the basis function 
(D(x) is bounded such that J(D(x)JJ<(D o  or 

if the uncertainty O* T(D(x) is non-destabilizing and the feed- 
60 

	

back control system without adaptation is robustly stable, 	°m_ _ 

I'=-gF(D(x)(D T(x)F, where rl>OER-"m is an adjustment  .n(Q) .n (BTA -TQ9m'B) 	 4111BT PAmi BIhDo  
matrix whose elements are the adjustment parameters 	

2 BTPAm'Bhoo 	
~1+ 1- 	

(Q) (BTA —TQ9 m'B) 

	

for each individual element of the adaptive gain mat rix 65 	 m 

such that 0:5X_,,(rl)<vX_in(BTA_-TQAm-'B)ER  is the 
stability condition, 

where F'  is a properly chosen new initial condition for the 
covariance adaptive gain adjustment method for t2A, when a 
new uncertainty becomes present , and F, is phased in by a 
first-order filter I=- ~ (I -I ~) or any order filter so chosen for 
tE[t,,t,+nAt], where X>O, F-F(t) as t=t,-At computed from 
the previous time step and nAt is the duration of transition 
from some previous adaptive gain value to the new initial 
condition F, where n can be selected appropriately to ensure 
F—F, to within a specified tolerance. 

V.- = 

Ami,(Q)Ami,(BT  AmT  QAm'B)  ~1 + 
2IIBT PAm i BI1

2
02  

if the basis function (D(x) belongs to a class of functions such 
that J4)(x)JJ:5JJxJJ  or 

Um~ _  2
A,s (BTAmTQAmiB)IIPBIh 1+ 1-  ~~ ;n(Q)IIBT PAm'BI1

2  
Ami,(Q)IIBTPAm'BIh 	 A;n(BT AmT QAmi B)IIPBIh 
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if the basis function (D(x) belongs to a class of functions such 
that J4)(x)JJ:5JJxJJ  or 

46 
using an adaptive gain normalization method described by 

F  
5 	F(t) = 

1 + (DT (x)R(D(x) 

Um~ _  2
;L,s (BTAmTQAmiB)IIPBI12  1+ 1- gA ;n(Q)IIB T PAm'BIh  

Ami,(Q)IIBTPAm'BIh 	 Am2 ;n(BT AmT QAm
1
B)IIPBI1 2  

if the uncertainty O* T(D(x) is non-destabilizing and the feed-
back control system without adaptation is robustly stable, 

I'=-gF(D(x)(D T(x)F, where q>OER-'-  is an adjustment 
matrix whose elements are the adjustment parameters 
for each individual element of the adaptive gain matrix 
such that 0:5X_,,( ,q)<vX_i„(B TA_-TQAm-r B)ER is the 
stability condition, 

gF(D(x)
(D
T (x)F  

1 + (DT (x) R(D(x)'  

where F on the right hand side is a constant adaptive gain 
matrix and R=RT>OER-'-  is a positive-definite normaliza-
tion matrix such that 0:5R<R m_ whereupon 

10 

(DT (x)Rm_(D(x) < C12 = 

vAmi,(Q)Ami,(BT  AmT  QAmiB)  x x 1 + 1 + 	411PB112  
15 	 211 pB11 2 	 vAmi, (Q)Ami, (BT  AmT QA  m- 1 B) 

10. The computer-implemented method of claim 7, further 
comprising: 

20 	accessing an adaptive gain matrix F allowed to be time- 
varying; 

calculating, with a processor, optimal control modification 
adaptive laws with time-varying adaptive gain F(t); 

using an adaptive gain normalization method described by 
where R=RT>O is a positive-definite normalization matrix, 25 

I -PF-'gF(D(x)(D T(x)F, where P -P T>O is the forgetting 
factor matrix, 	 F(t) _ 

1 + (DT (x)R(D(x)' 

[/3C - qC(D(x)(DT  (x)C] if C;~ <- Gij (to) 
C~~ _ 

0 	 otherwise 

r/C(D(x)(DT  (x)C'  
C 

—  F  1 +(DT(x)R(D(x)' and 
 

gF(D(x)
(DT (x)F 

  
C.. = 	1+(D (x)R(D(x) 

0 	 otherwise 

using any of the aforementioned covariance adaptive gain 
adjustment methods with a resetting mechanism 
described by 

C with F(ti ) = [ ; t ? r, when threshold is exceeded at t = r, 
C- 

C with C(0) = F O 	 otherwise 

where F, is a properly chosen new initial condition for the 
covariance adaptive gain adjustment method for t2A, when a 
new uncertainty becomes present, and F, is phased in by a 
first-order filter I=- ~ (I -I ~) or any order filter so chosen for 
tE[t ,t +nAt], where X>O, F-F(t) at t=t,-At computed from the 
previous time step and nAt is the duration of transition from 
some previous adaptive gain value to the new initial condition 
F, where n can be selected appropriately to ensure F—F, to 
within a specified tolerance. 

9. The computer-implemented method of claim 6, further 
comprising: 

accessing an adaptive gain matrix F allowed to be time-
varying; 

calculating, with a processor, optimal control modification 
adaptive laws with time-varying adaptive gain F(t); 

30 where F on the right hand side is a constant adaptive gain 
matrix and R=RT>OER-x-  is a positive-definite normaliza-
tion matrix such that 0:5R<R m_ whereupon 

35 (D
T (x)Rm_ (D(x)ciz = 

vAmi,(Q)Ami,(BTAmTQAm1B) 
 x x 

211PB11 2  

411PBIF  
vAmi, (Q)A,~i. (BT  AmT  QAmi  B) 

40 

11. The computer-implemented methods of claim 9, fur-
ther comprising: 

accessing an adaptive gain matrix F allowed to be time-
varying; 

45 	calculating, with a processor, optimal control modification 
adaptive laws with time-varying adaptive gain F(t); 

combining at least one of the covariance adaptive gain 
adjustment methods with the adaptive gain normaliza-
tion method. 

50 12. The computer-implemented methods of claim 10, fur-
ther comprising: 

accessing an adaptive gain matrix F allowed to be time-
varying; 

calculating, with a processor, optimal control modification 
55 	adaptive laws with time-varying adaptive gain F(t); 

combining at least one of the covariance adaptive gain 
adjustment with the adaptive gain normalization. 

13. The computer-implemented method of claim 1, further 
comprising: 

60 	modeling a physical system using a linear plant as x=Ax+ 
B[u+f(x)]+w, where f(x)=0* Tx is a matched uncer-
tainty; 

using a feedback controller u(t) specified by a=-K xx+K r- uad, where u_, O Tx is an adaptive controller; 
65 	estimating a parametric uncertainty by an optimal control 

modification adaptive law as 0=-Fx(e TP-vxTOB T  
PA_- ')B, where 0:5v<vm_, 
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using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -t 0-0 under fast adaptation as 
L-- to establish the equilibrium value of the adaptive 
controller as uad O Tx-1/v(B TA_-TPB)-1 B TPe; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -t 0-0 under fast adaptation as 
L-- to establish the linear feedback control system in 
the limit as X=(A m +1/vP-tA_ TP+BO* T)x-1/vP- 'A_T  
Pxm +Bmr+w, where the modification parameter v can be 
established such that the matrix A m +1/vP-tA_ TP+ 
BO* Tis a Hurwitz matrix to guarantee closed-loop sta-
bility of the adaptive control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -1 6-0 under fast adaptation as 
L-- to analyze the stability margins of the linear feed-
back control system in the limit using linear time-invari-
ant (LTI) methods to provide robustness of the adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -1 6-0 under fast adaptation as 
F­  to compute the steady state tracking error in the 
limit as t-- or L—oo as limt--IFll_ 
—Am-1  Bm +(Am +I /vP-1  Am  TP+BE) * T)-1 (I /vP—'Am T 

PA_-t +I)B_Illlrll-  which exhibits a linear input-output 
mapping to guarantee performance and provide predict-
ability of the adaptive control system. 

14. The computer-implemented method of claim 1, further 
comprising: 

modeling a physical system using a input-delay linear plant 
as Xc Ax+B[u(t-t d)+f(x)]+, where f(x)=0* Tx is a 
matched uncertainty and t d  is a given input time delay; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -1 0-0 under fast adaptation as 
L-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)-1 /vP-tA_ TPxm (t-td)+B mr(t—td)+w, where the modi-
fication parameter v can be established such that the 
matrix A_+1/vP-tA_ TP+BO* Tis a Hurwitz and the sta-
bility condition detow-A,+Ade'" I-0 is satisfied or 
alternatively using the matrix measure method 

td < 1 COS 
 -

1 
 L 

P(AI) +r(✓Ad) 

	

W 	IlAdll 	J 

where 

A+BO*T  0 0 

= u(-jAJ + IlAdll, A, = 	0 	Am  0 
ana 

1 
0 	0 — 

td 

BKx x— 1 P 1 AmP 1 P 1 Am P 0 
V 	V 

	

A d  = 	 0 	 0 	0 

0 	 0 	1  
td 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -1 6-0 under fast adaptation as 
L-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t- 

48 
td)-1/vP-tA_ TPxm(t-td)+Bmr(t-td)+w when r(t) is a 
constant command, where the modification parameter v 
can be established such that the matrix A m + 
1/vP-IA_ TP+BO* Tis a Hurwitz and the stability condi- 

5 	tion detOw-A,+Ade'",I)-0 is satisfied or alternatively 
using the matrix measure method 

10 	t < lCOS i f u(AI)+u ( jAd) l 
d 	w 	L 	IlAdll 	J 

where 

15 

=u(-jAJ+ IIAdl6 	
A + BO*T 0

A=- ~ 

	

0 	Am  

20 

BKxx — ~ P-i A,T p ~ P-i AT~ P 
Ad = 	 V 	 V 

25 	 0 	 0 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

30 using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon L -1 6-0 under fast adaptation as 
L-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)+w when x_(t) and r(t) are constant or zero for an 

35 adaptive regulator design, where the modification 
parameter v can be established such that the matrix 
Am +1/vP- 'A-TP+BO* T  is a Hurwitz and the 
stability condition detUco-A-BO* T+ 

40 	(BKxx-1/vP-tA_ TP)e'' tl-O is satisfied or alterna- 
tively using the matrix measure method where 

1 
F'A µ(A+BO* T)+ p(- j[BK—' 	,T  „P]) 

45 	 td  <_ 1  COs 	 111111   

BKx — ~ P-1 A,Tn P 
V 

where w-u( jA jB0* r)+IIBKx  1/vP- 'A_TPII to guarantee 
50 closed-loop stability of the input-delay adaptive control sys-

tem. 

15. The computer-implemented method of claim 13, fur-
ther comprising: 

55 	modeling a physical system using an input-delay linear 
plantas c Ax+B[u(t-td)+f(x)]+w, where f(x)=0* Txisa 
matched uncertainty and t d  is a given input time delay; 

using the linear asymptotic property whereupon 6-0 as 
60  t-- or whereupon L-1 6-0 under fast adaptation as 

L-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)-1/vP-tA_ TPxm(t-td)+Bmr(t-td)+w, where the modi-
fication parameter v can be established such that the 

65 matrix Am +l/vP-tA_ TP+BO* Tisa Hurwitz and the sta-
bility condition detOw-A,+A de''td)-0 is satisfied or 
alternatively using the matrix measure method 
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td < 1  COS 1
L 
y(A,  +y( ✓Ad) 

 IlAdll 	J 

where 

A+BO*T  0 0 

= u(-jAJ +IlAdll, A, = 	0 	Am  0 , and 
1 

0 	0 — 
td 

BKxx - -P 'AmTP -P i AmP 0 
V 	v 

A d  = 	0 	 0 	0 

1 
0 	 0 	— 

td 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon F - '0-0 under fast adaptation as 
F-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)-1/vP-rA_TPxm(t-td)+Bmr(t-td)+w when r(t) is a 

constant command, where the modification parameter v 
can be established such that the matrix A m + 
1/vP-r A_ TP+BO* T is a Hurwitz and the stability condi-
tion det(jw-A,+Ade''td)-0 is satisfied or alternatively 
using the matrix measure method 

td <- 1Cos i f µ(A,+µ(jAd ) l where 
W 	L 	IIAdII 	J 

=u(- ✓AJ+IIAeIh 	
A+BO*T 0

A~=~ 
0 	Am  

and 

A 	
BKx x V  'Am p  V  'A M P 

d - 	
0 	 0 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon F - '0-0 under fast adaptation as 
F-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)+w when x_(t) and r(t) are constant or zero for an 
adaptive regulator design, where the modification 
parameter v can be established such that the matrix 
Am +1/vP-rA_ TP+BO* T  is a Hurwitz and the stability 
condition det[jw-A-BO* T+(BKxx-1/vP-rA_ TP) 
e w -O is satisfied or alternatively using the matrix 
measure method 

50 

td < 

 

1µ(A+BO*T)+ ~j[BK,-- 
V 
 P-iA,TnP~~ COS 

 

_1 

	 ,,, 111111  BKx  - _ P -1 AT 
5 

where w-u( jA jB0* T)+IIBKx  1/vP-rA_ TPII to guarantee 
closed-loop stability of the input-delay adaptive control sys-

10  tem. 

16. The computer-implemented method of claim 1, further 
comprising: 

modeling a physical system using an input-delay linear 
15 	plant as c Ax+B[u(t--t d)+f(x)]+w, where f(x)=0* Tx is 

a matched uncertainty and t d  is a given input time delay; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon F - '0-0 under fast adaptation as 
F-- to establish the linear feedback control system in 

20 the limit as X=(A+BO* T)x+(-BKxx+l/vP-Am TP)x(t-
td)-1/vP-rA_ TPxm (t-td)+Bmr(t-td)+w, where the modi-
fication parameter v can be established such that the 
matrix A_+1/vP -rA_ TP+BO* Tis a Hurwitz and the sta-
bility condition detOw-A e+Ade''tI-0 is satisfied or 

25 	alternatively using the matrix measure method 

td < 1 COS 
 
- 1 

 L 
u(AI  + f[(✓Ad) 

W 	IlAdll 	J 
30 

where 

35 	 A+BO* T  0 0 

	

= u(-jAJ + IIAdII, A, - 	0 	Am  0 ,and 
1 

0 	0 
— td 

40 
BKxx- 1 P 1 AmP 1 P 1 AmP 0 

V 	 v 

Ad  - 	0 	 0 	0 

0 	 0 	1  
td 

45 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
So t-- or whereupon F- '0-0 under fast adaptation as 

F-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-rAm TP)x(t-
t)-1/vP-rA_ TPxm(t-td)+B mr(t-td)+w when r(t) is a con-
stant command, where the modification parameter v can 

55 be established such that the matrix A m +1/vP-rA_ TP+ 
BO* T  is a Hurwitz and the stability condition detow-
AE+A,,&'tl-O is satisfied or alternatively using the 
matrix measure method 

60 

td  <- lcos [p (
A`)+µ(jAd ) l where 

W 	L 	IIAdII 	J 

1 

A+BO* T  0 

65 	 0 	Am 
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52 
and 

ZYm -  2y 
u= 	, 

V 

A d= 
 BKx- yP'AmP V   iAmP 

e- 	
0 	 0 

to guarantee closed-loop stability of the input-delay adaptive 
control system; 

using the linear asymptotic property whereupon 6-0 as 
t-- or whereupon F - '0-0 under fast adaptation as 
F-- to establish the linear feedback control system in 
the limit as X=(A+BO* T)x+(-BKxx+l/vP-rAm TP)x(t-
td)+w when x_(t) and r(t) are constant or zero for an 
adaptive regulator design, where the modification 
parameter v can be established such that the matrix 
Am +I/vP-rA_'P+BO* T  is a Hurwitz and the stability 
condition detUco-A-BO* T+(BKxx-1/vP-rA_ TP) 
e'" I-0 is satisfied or alternatively using the matrix 
measure method 

1 
1 µ(A+BO,T)+

L  
~~BKx  - - V P 

td 	

COS 

 

_ 1 
 

	

„ll
<~ 	

1 
BK --P-1 A,Tn P 

V  

where w-u( jA jB0* T)+IIBKx  I/vP-rA_ TPII to guarantee 
closed-loop stability of the input-delay adaptive control sys-
tem. 

17. A computer-implemented method for adaptive control 
of a physical system such as an aircraft, the method compris-
ing: 

modeling a physical system with unmodeled dynamics or 
non-minimum phase behaviors using an input -output 
transfer function as 

Y = Wp (S)u = kp 
Rp(S) 

 u, 

where kP  is a high-frequency gain, and ZP (s) and RP(s) are 
monic Hurwitz polynomials of degrees mP  and nP, respec-
tively, and nP-mP>l; 

modeling a reference model using a transfer function as 

Z , (s)  
Ym = Wm (s)Y - km  Wm— 

 (S) Y  

where km  is a high-frequency gain, and Z_(s) and R_(s) are 
monic Hurwitz polynomials degrees mm  and nm, respectively, 
and nm-mm >-1; 

specifying nP-mP>nm-mm, so that the strictly positive real 
(SPR) condition is no longer possible to ensure tracking 
of the reference model; 

using an adaptive controller u=kyy+kx with the optimal 
control modification adaptive laws ky-yy(ye-vx'ky) and 
k,,_Y,.(re-vr2kr); 

using the linear asymptotic property whereupon kyb  —0  and 
k,.-0 as t-- or whereupon yy r ky,0 and yr r k,.,0 
under fast adaptation as y y-- and y,.-- to establish the 
equilibrium value of the adaptive controller as 

5 
using the linear asymptotic property whereupon ky-0 and 

k,.-0 as t-- or whereupon yy r ky-0 ad yr rk,.-0 
under fast adaptation as y y-- and y,.-- to establish the 
linear feedback control system in the limit as 

10 

ZkmkpZp(s) m(s)  
Y= W~ (S)Y= 

Rm (S)(vRp (s)+2kpZp(S))Y, 

15 where the modification parameter v can be established such 
that he linear asymptotic closed-loop transfer function W,(s) 
is stable. 

18. The computer-implemented method for adaptive con-
20  trol of an aircraft of claim 17, further comprising: 

modeling an aircraft using a linear plant as 

p 	1 	 0 	 P 
25 	

g = 	0 	 0 	 1 	 f}gdr 
~ y 	 0 

R 	 0 	- (cop+ 9gi ) -(2Sp cop +Bgz ) 

1 0 

30 	 0 0 
up 

 - 
~p  ~ , where Bp , Bgi  , 

0 1 
U  - Oq 

and O qz  the uncertain parameters , and 6P(t) and 6q(t) are sca-
35 lar, time-varying uncertain disturbances; 

modeling the pitch axis reference model as a second order 
reference model and the roll axis reference model as a 
first order reference model as 

40 

Pm 	-cop  1 	0 	1 	 Pm 	
1 0 

l ff 	l 

	

qm = 0 	0 	1 	J  gmdr +IO 0 
Yp 

J 
qm 	0 
	_&)2 	 1 

rq 

45 	
q  —ZS9~9   gm 

where the pilot commands rp (t) and rq(t) are computed from 
the pilot stick inputs 6,, t(t) and 6 io„(t) according to 

50 

	

r 	(
Yma 

a 
~kpcop6tar 

	

Yq 	kg wg[6,+ 4 J  Etondr] LL 	o 
55 

using a nonlinear dynamic inversion controller as 
6=B8- r [IX,md+Qx/Q-f,(y)J +6o, where the vector of 
estimated aerodynamic moments f, (y) is calculated 

60 from the on-board aerodynamic lookup tables, while the 
angular rates Q are measured using aircraft sensors, I is 
the inertia matrix of the aircraft, 6 0  are pre-determined 
trim surface commands appropriate for the test flight 
condition , and B,- ' is a weighted pseudo -inverse of the 

65 control effectiveness derivatives with respect to the sur-
face positions weighted by a control allocation matrix 
computed as Bb r=W-r BbT(B,5W-r B,5  )-r; 
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modeling the angular acceleration commands 	 and 

P,f + P, + Pa  

x—d W=z,f+ z, + k, = g,f+g,+ga 

prf+ p 	 5 

as the sum of the desired reference dynamics X,, f(t) produced 
by the nonlinear dynamic inversion reference model, the out-
put X,(t) of the error compensator, and adaptive control aug-
mentation X a(t); 10 

using the nonlinear dynamic inversion adaptive flight con- 
troller to cancel out the effects of the uncertain param- 
eters 6P, 6 q,, 0,,, ,,(t), and aq(t) by the adaptive aug- 
mentation controller 

15 

uv 	ry + Pa 	 Pa  
BPp+ & P  

— 	,where 	— 	( ~̀ 

uq 	rP + 4a 	4, 	9qi  J g d r + 9q, g + &g  
0 

estimating the uncertain parameters by the optimal control 20 
modification adaptive laws with adaptive gain normal-
ization as 

BP = 

 

	

F, 	 25 
 z IPPPPBm❑ + voP  p'B,Bm P  PP A m' BmP) 	

25 
1+NoP p  

rejecting disturbances by the optimal control modification 
adaptive laws with adaptive gain normalization plus dis-
turbance rejection as 

0, 1+Nc P2(PPPBmP+vc,B,BmPPPAMPBmP) 
P 

and 

9 = 	
F,a 	(zT  P B,,,q  + V Cq  & Bm q  P Amg B mq  ). 9 1 +xq NQq  xP q 9 	 9 	9 

54 

9q  = 	Toa 	(xgzgPg B q  +vog xg xg9q Bm q Pq Amq Mq ), where 
1 + xq  Noq  xP  

9q = 9qi  9q2 ]T, P = Pm — P, 

T 	 r 	 T 

xq  = f qdT g aI1Cj XP  = L f (qm - g)dT  Qm - Q J 0 	 0 
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